
For Use with MATLAB®

User’s Guide
Version 2

Model Predictive Control
Toolbox

Alberto Bemporad
Manfred Morari

N. Lawrence Ricker



How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Model Predictive Control Toolbox User’s Guide  
© COPYRIGHT 1995-2005 by The MathWorks, Inc.  
The software described in this document is furnished under a license agreement.  The software may be used 
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, 
for, or through the federal government of the United States. By accepting delivery of the Program or 
Documentation, the government hereby agrees that this software or documentation qualifies as commercial 
computer software or commercial computer software documentation as such terms are used or defined in 
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this 
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, 
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation 
by the federal government (or other entity acquiring for or through the federal government) and shall 
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's 
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the 
Program and Documentation, unused, to The MathWorks, Inc. 

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are 
registered trademarks of The MathWorks, Inc.  
Other product or brand names are trademarks or registered trademarks of their respective 
holders.

Patents
The MathWorks products are protected by one or more U.S. patents.  Please see 
www.mathworks.com/patents for more information.



Revision History
January 1995 First printing
October 1998 Online only
June 2004 Online only Revised for Version 2.0 (Release 14)
October 2004 Online only Revised for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)





Contents
1
Introduction

What Is the Model Predictive Control Toolbox? . . . . . . . . . .  1-2

Model Predictive Control of a SISO Plant . . . . . . . . . . . . . . .  1-3
A Typical Sampling Instant  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5
Prediction and Control Horizons  . . . . . . . . . . . . . . . . . . . . . . . .  1-8

MIMO Plants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
Optimization and Constraints  . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
State Estimation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-13
Blocking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-14

2
MPC Problem Setup

Prediction Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
Offsets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4

Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5

State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8
Measurement Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8
Output Disturbance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9
State Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9

QP Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12
Optimization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-13
Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-15
Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-16
i



ii Contents
MPC Computation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-18
Unconstrained MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-18
Constrained MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-18

Using Identified Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-19

3
MPC Simulink Library

MPC Controller Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
Opening the Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
MPC Controller Block Mask  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-3
Look Ahead and Signals from the Workspace  . . . . . . . . . . . . . .  3-4
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5
Using the MPC Toolbox with Real-Time Workshop . . . . . . . . . .  3-5

4
Case-Study Examples

Servomechanism Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
Control Objectives and Constraints  . . . . . . . . . . . . . . . . . . . . . .  4-4
Defining the Plant Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4
Controller Design Using MPCTOOL  . . . . . . . . . . . . . . . . . . . . .  4-5
Using MPC Toolbox Commands  . . . . . . . . . . . . . . . . . . . . . . . .  4-19
Using MPC Tools in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . .  4-23

Paper Machine Process Control  . . . . . . . . . . . . . . . . . . . . . . .  4-26
Linearizing the Nonlinear Model  . . . . . . . . . . . . . . . . . . . . . . .  4-27
MPC Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-29
Controlling the Nonlinear Plant in Simulink . . . . . . . . . . . . . .  4-35

Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-38



5
The Design Tool

Opening the MPC Design Tool . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2

The Menu Bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
File Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
MPC Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4

The Toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6

The Tree View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7
Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7
Renaming a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7

Importing a Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9
Import from  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10
Import to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11
Importing a Linearized Plant Model . . . . . . . . . . . . . . . . . . . . .  5-12

Importing a Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-15
Import from  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-16
Import to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-17
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-17

Exporting a Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-19
Dialog Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-19
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-20

Signal Definition View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-21
MPC Structure Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-21
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-22
Signal Properties Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-22
Right-Click Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-24

Plant Models View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-26
Plant Models List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Additional Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-28
iii



iv Contents
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-28
Right-Click Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-28

Controllers View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-29
Controllers List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-30
Controller Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-31
Additional Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-31
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-31
Right-Click Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-32

Simulation Scenarios List . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-33
Scenarios List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-34
Scenario Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35
Additional Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35
Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35
Right-Click Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35

Controller Specifications View  . . . . . . . . . . . . . . . . . . . . . . . .  5-36
Model and Horizons Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-36
Constraints Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-39
Constraint Softening  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-41
Weight Tuning Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-46
Estimation Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-49
Right-Click Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-56

Simulation Scenario View  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-58
Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-59
Setpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-59
Measured Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-60
Unmeasured Disturbances  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-61
Signal Type Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-63
Simulation Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-64
Right-Click Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-64

Response Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-66
Data Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-66
Displaying Multiple Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . .  5-68
Viewing Selected Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-69
Grouping Variables in a Single Plot . . . . . . . . . . . . . . . . . . . . .  5-69



Normalizing Response Amplitudes . . . . . . . . . . . . . . . . . . . . . .  5-70

6
Function Reference

Functions — Categorical List  . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
MPC Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
MPC Controller Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
Linear Behavior of MPC Controller  . . . . . . . . . . . . . . . . . . . . . .  6-3
MPC State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-3
MPC Computation and Simulation . . . . . . . . . . . . . . . . . . . . . . .  6-3
State Estimation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4
Quadratic Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4

Functions — Alphabetical List  . . . . . . . . . . . . . . . . . . . . . . . . .  6-5

7
Block Reference

Blocks — Alphabetical List . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-2

8
Object Reference

MPC Controller Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2
Construction and Initialization . . . . . . . . . . . . . . . . . . . . . . . . .  8-12

MPC State Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-13

MPC Simulation Options Object . . . . . . . . . . . . . . . . . . . . . . .  8-14
v



vi Contents
Index



1

Introduction

What Is the Model Predictive Control Toolbox? (p. 1-2) Toolbox overview

Model Predictive Control of a SISO Plant (p. 1-3) Toolbox concepts: horizons, constraints, 
tuning weights

MIMO Plants (p. 1-10) Extension to plants with multiple inputs 
and outputs
 



1 Introduction

1-2
What Is the Model Predictive Control Toolbox?
The Model Predictive Control (MPC) Toolbox is a collection of software that 
helps you design, analyze, and implement an advanced industrial automation 
algorithm. Like other MATLAB® tools, it provides a convenient graphical user 
interface (GUI) as well as a flexible command syntax that supports 
customization.

As its name suggests, MPC automates a target system (the “plant”) by 
combining a prediction and a control strategy. An approximate, linear plant 
model provides the prediction. The control strategy compares predicted plant 
states to a set of objectives, then adjusts available actuators to achieve the 
objectives while respecting the plant’s constraints. Such constraints can 
include the actuators’ physical limits, boundaries of safe operation, and lower 
limits for product quality.

MPC’s constraint-tolerance differentiates it from other “optimal control” 
strategies (e.g., the Linear-Quadratic-Gaussian approach supported in the 
Control Systems Toolbox). The impetus for this is industrial experience 
suggesting that the drive for profitability often pushes the plant to one or more 
constraints. MPC’s explicit consideration of such factors allows it to allocate 
the available plant resources intelligently as the system evolves over time.

The MPC Toolbox uses the same powerful linear dynamic modeling tools found 
in the Control Systems and System Identification Toolboxes. You can employ 
transfer functions, state-space matrices, or a combination of the two. You can 
also include delays, which are a common feature of industrial plants.

If you don’t have a model but can perform experiments, you can use the System 
Identification Toolbox to develop a data-based model, then exploit it in the 
MPC Toolbox.

If you’d rather use Simulink® graphical tools to model your plant, the MPC 
Toolbox provides a Simulink block for that environment. For example, you can 
easily linearize a nonlinear Simulink plant, use the linearized model to build 
an MPC Controller block, and evaluate its control of the nonlinear plant.

Finally,you can use MPC tools in Simulink to develop and test a control 
strategy, then implement it in a real plant using the Real Time Workshop.



Model Predictive Control of a SISO Plant
Model Predictive Control of a SISO Plant
The usual MPC Toolbox application involves a plant having multiple inputs 
and multiple outputs (a MIMO plant). 

Consider instead the simpler application shown in Figure 1-1 (see summary of 
nomenclature in Table 1-1). This plant could be a manufacturing process, such 
as a unit operation in an oil refinery, or a device, such as an electric motor. The 
main objective is to hold a single output, , at a reference value (or setpoint), r, 
by adjusting a single manipulated variable (or actuator) u. This is what is 
generally termed a SISO (single-input single-output) plant. The block labeled 
MPC represents an MPC Toolbox feedback controller designed to achieve the 
control objective.

The SISO plant actually has multiple inputs, as shown in Figure 1-1. In 
addition to the manipulated variable input, u, there may be a measured 
disturbance, v, and an unmeasured disturbance, d. 

Figure 1-1:  Block Diagram of a SISO MPC Toolbox Application

The unmeasured disturbance is always present. As shown in Figure 1-1, it is 
an independent input – not affected by the controller or the plant. It represents 
all the unknown, unpredictable events that upset plant operation. (In the 
context of Model Predictive Control, it can also represent unmodeled 
dynamics.) When such an event occurs, the only indication is its effect on the 
measured output, y, which is fed back to the controller as shown in Figure 1-1.

y

+
+PlantMPC

v

r

y
d

z

yyu

v

Measured Disturbance

Measured Output (Controlled Variable)

Noise

Setpoint

Unmeasured
Disturbance

Actuator
Plant
Output
1-3



1 Introduction

1-4
Some applications have unmeasured disturbances only. A measured 
disturbance, v, is another independent input affecting . In contrast to d, the 
controller receives the measured v directly, as shown in Figure 1-1 This allows 
the controller to compensate for v’s impact on  immediately rather than 
waiting until the effect appears in the y measurement. This is called 
feedforward control.

In other words, an MPC Toolbox design always provides feeback compensation 
for unmeasured disturbances and feedforward compensation for any measured 
disturbance.

Table 1-1:  Description of MPC Toolbox Signals

Symbol Description

d Unmeasured disturbance. Unknown but for its effect 
on the plant output. The controller provides feedback 
compensation for such disturbances.

r Setpoint (or reference). The target value for the output.

u Manipulated variable(or actuator). The signal the 
controller adjusts in order to achieve its objectives.

v Measured disturbance (optional). The controller 
provides feedforward compensation for such 
disturbances as they occur to minimize their impact on 
the output.

Output (or controlled variable). The signal to be held 
at the setpoint. This is the “true” value, uncorrupted 
by measurement noise.

y Measured output. Used to estimate the true value, .

z Measurement noise. Represents electrical noise, 
sampling errors, drifting calibration, and other effects 
that impair measurement precision and accuracy.

y

y

y

y



Model Predictive Control of a SISO Plant
The MPC Toolbox design requires a model of the impact that v and u have on 
 (symbolically,  and ). It uses this plant model to calculate the u 

adjustments needed to keep  at its setpoint.

This calculation considers the effect of any known constraints on the 
adjustments (typically an actuator upper or lower bound, or a constraint on 
how rapidly u can vary). One may also specify bounds on . These constraint 
specifications are a distinguishing feature of an MPC Toolbox design and can 
be particularly valuable when one has multiple control objectives to be 
achieved via multiple adjustments (a MIMO plant). In the context of a SISO 
system, such contraint handling is often termed an anti-windup feature.

If the plant model is accurate, the plant responds quickly to adjustments in u, 
and no constraints are encountered, feedforward compensation can counteract 
the impact of v perfectly. In reality, model imperfections, physical limitations, 
and unmeasured disturbances cause the y to deviate from its setpoint. 
Therefore, the MPC Toolbox design includes a disturbance model ( ) to 
estimate d and predict its impact on . It then uses its  model to calculate 
appropriate adjustments (feedback). This calculation also considers the known 
constraints. 

Various noise effects can corrupt the measurement. The signal z in Figure 1-1 
represents such effects. They could vary randomly with a zero mean, or could 
exhibit a non-zero, drifting bias. The MPC Toolbox design uses a  model 
in combination with its  model to remove the estimated noise component 
(filtering).

The above feedforward/feedback actions comprise the controller’s regulator 
mode. The MPC Toolbox design also provides a servo mode, i.e., it adjusts u 
such that  tracks a time-varying setpoint. 

The tracking accuracy depends on the plant characteristics (including 
constraints), the accuracy of the  model, and whether or not future 
setpoint variations can be anticipated, i.e., known in advance. If so, it provides 
feedforward compensation for these.

A Typical Sampling Instant
An MPC Toolbox design generates a discrete-time controller – one that takes 
action at regularly-spaced, discrete time instants. The sampling instants are 
the times at which the controller acts. The interval separating successive 
sampling instants is the sampling period, ∆t (also called the control interval). 

y v y→ u y→
y

y

d y→
y u y→

z y→
d y→

y

u y→
1-5



1 Introduction

1-6
This section provides more details on the events occuring at each sampling 
instant.

Figure 1-2:  Controller State at the kth Sampling Instant

Figure 1-2 shows the state of a hypothetical SISO MPC system that has been 
operating for many sampling instants. Integer k represents the current 
instant. The latest measured output, yk, and previous measurements, yk-1, yk-2, 
..., are known and are the filled circles in Figure 1-2(a). If there is a measured 
disturbance, its current and past values would be known (not shown).

y

y
min

max

Setpoint

Past Future

Estimated
Measured

Prediction Horizon, P

r

Sampling Instants

u
min

umax

Control
Horizon

Past Moves
Planned Moves

k +1 +2 +3 +4 +5 +6 +7 +8 +9-1-2-3-4

(a)

(b)



Model Predictive Control of a SISO Plant
Figure 1-2 (b) shows the controller’s previous moves, uk-41, ..., uk-1, as filled 
circles. As is usually the case, a zero-order hold receives each move from the 
controller and holds it until the next sampling instant, causing the step-wise 
variations shown in Figure 1-2 (b).

To calculate its next move, uk the controller operates in two phases:

1 Estimation. In order to make an intelligent move, the controller needs to 
know the current state. This includes the true value of the controlled 
variable, , and any internal variables that influence the future trend, 

, ..., . To accomplish this, the controller uses all past and current 
measurements and the models , , , and . For 
details, see “Prediction” and “State Estimation”.

2 Optimization. Values of setpoints, measured disturbances, and constraints 
are specified over a finite horizon of future sampling instants, k+1, k+2, ..., 
k+P, where P (a finite integer ≥ 1) is the prediction horizon – see Figure 1-2 
(a). The controller computes M moves uk, uk+1, ... uk+M-1, where M ( ≥ 1, ≤ P) 
is the control horizon – see Figure 1-2 (b). In the hypothetical example 
shown in the figure, P = 9 and M = 4. The moves are the solution of a 
constrained optimization problem. For details of the formulation, see 
Chapter 2, “Optimization Problem”.

In the example, the optimal moves are the four open circles in Figure 1-2 (b), 
and the controller predicts that the resulting output values will be the nine 
open circles in Figure 1-2 (a). Notice that both are within their constraints, 

 and .

When it’s finished calculating, the controller sends move uk to the plant. The 
plant operates with this constant input until the next sampling instant, ∆t time 
units later. The controller then obtains new measurements and totally revises 
its plan. This cycle repeats indefinitely.

Reformulation at each sampling instant is essential for good control. The 
predictions made during the optimization stage are imperfect. Periodic 
measurement feedback allows the controller to correct for this error and for 
unexpected disturbances.

yk
yk 1+ yk P+

u y→ d y→ w y→ z y→

umin uk j+ umax≤ ≤ ymin yk i+ ymax≤ ≤
1-7



1 Introduction

1-8
Prediction and Control Horizons
You might wonder why the controller bothers to optimize over P future 
sampling periods and calculate M future moves when it discards all but the 
first move in each cycle. Indeed, under certain conditions a controller using P 
= M = 1 would be identical to one using P = M = ∞. More often, however, the 
horizon values have an important impact. Some examples follow:

• Constraints. Given sufficiently long horizons, the controller can “see” a 
potential constraint and avoid it – or at least minimize its adverse effects. 
For example, consider the situation depicted below in which one controller 
objective is to keep plant output y below an upper bound ymax. The current 
sampling instant is k, and the model predicts the upward trend yk+i. If the 
controller were looking P1 steps ahead, it wouldn’t be concerned by the 
constraint until more time had elapsed. If the prediction horizon were P2, it 
would begin to take corrective action immediately.

• Plant delays. Suppose that the plant includes a pure time delay equivalent 
to D sampling instants. In other words, the controller’s current move, uk, has 
no effect until yk+D+1. In this situation it is essential that P >> D and M << 
P − D, as this forces the controller to consider the full effect of each move.

For example, suppose D = 5, P = 7, M = 3, the current time instant is k, and 
the three moves to be calculated are uk, uk+1, and uk+2. Moves uk, uk+1 would 
have some impact within the prediction horizon, but move uk+2 would have 
none until yk+8, which is outside. Thus, uk+2 is indeterminant. Setting P = 8 
(or M = 2) would allow a unique value to be determined. It would be better to 
increase P even more.

• Other nonminimum phase plants. Consider a SISO plant with an 
inverse-response, i.e., a plant with a short-term response in one direction, 

k k+P1 k+P2

ymax

yk+i



Model Predictive Control of a SISO Plant
but a longer term response in the opposite direction. The optimization should 
focus primarily on the longer-term behavior. Otherwise, the controller would 
move in the wrong direction.

Most designers choose P and M such that controller performance is insensitive 
to small adjustments in these horizons. Here are typical rules of thumb for a 
lag-dominant, stable process:

1 Choose the control interval such that the plant’s open-loop settling time is 
approximately 20-30 sampling periods (i.e., the sampling period is 
approximately one fifth of the dominant time constant).

2 Choose prediction horizon P to be the number of sampling periods used in 
step 1.

3 Use a relatively small control horizon M, e.g., 3-5.

If performance is poor, you should examine other aspects of the optimization 
problem and/or check for inaccurate controller predictions.
1-9



1 Introduction

1-1
MIMO Plants
One advantage of an MPC Toolbox design (relative to classical multi-loop 
control) is that it generalizes directly to plants having multiple inputs and 
outputs. Moreover, the plant can be non-square, i.e., having an unequal 
number of actuators and outputs. Industrial applications involving hundreds 
of actuators and controller outputs have been reported.

The main challenge is to tune the controller to achieve multiple objectives. For 
example, if there are several outputs to be controlled, it might be necessary to 
prioritize so that the controller provides accurate setpoint tracking for the most 
important output, sacrificing others when necessary, e.g., when it encounters 
constraints. The MPC Toolbox features support such prioritization.

Optimization and Constraints
As discussed in more detail in Chapter 2, “Optimization Problem”, the MPC 
Toolbox controller solves anoptimization problem much like the LQG optimal 
control described in the Control System Toolbox. The main difference is that 
the MPC Toolbox optimization problem includes explicit constraints on u and y.

Setpoint Tracking
Consider first a case with no constraints. A primary control objective is to force 
the plant outputs to track their setpoints.

Specifically, the controller predicts how much each output will deviate from its 
setpoint within the prediction horizon. It multiplies each deviation by the 
output’s weight, and computes the weighted sum of squared deviations, , 
as follows:

where k is the current sampling interval, k+i is a future sampling interval 
(within the prediction horizon), P is the prediction horizon, ny is the number of 
plant outputs, is the weight for output j, and  is the 
predicted deviation at future instant k+i.

If  the controller does its best to track rj, sacrificing ri tracking if 
necessary. If , on the other hand, the controller completely ignores 
deviations rj–yj.

Sy k( )

Sy k( ) wy
j rj k i+( ) yj k i+( )–[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

j 1=

ny

∑
i 1=

P

∑=

wj
y rj k i+( ) yj k i+( )–[ ]

wj
y wi j≠

y»
wj

y 0=
0



MIMO Plants
Choosing the weights is a critical step. You will usually need to tune your 
controller, varying the weights to achieve the desired behavior.

As an example, consider Figure 1-3, which depicts a type of chemical reactor (a 
CSTR). Feed enters continuously with reactant concentration CAi. A reaction 
takes place inside the vessel at temperature T. Product exits continuously, and 
contains residual reactant at concentration CA (<CAi). 

The reaction liberates heat. A coolant having temperature Tc flows through 
coils immersed in the reactor to remove excess heat.

Figure 1-3:  CSTR Schematic

From the MPC Toolbox point for view, T and CA would be plant outputs, and 
CAi and Tc would be inputs. More specifically, CAi would be an independent 
disturbance input, and Tc would be a manipulated variable (actuator).

There is one manipulated variable (the coolant temperature), so it’s impossible 
to hold both T and CA at setpoints. Controlling T would usually be a high 
priority. Thus, you might set the output weight for T much larger than that for 
CA. In fact, you might set the CA weight to zero, allowing CA to float within an 
acceptable operating region (to be defined by constraints).

Move Suppression
If the controller focuses exclusively on setpoint tracking, it might choose to 
make large manipulated-variable adjustments. These could be impossible to 
achieve. They could also accelerate equipment wear or lead to control system 
instability.

Thus, the MPC Toolbox controller also monitors a weighted sum of controller 
adjustments, calculated according to the following equation:

Tc

CAi

CAT
1-11



1 Introduction

1-1
where M is the control horizon, nmv is the number of manipulated variables, 
 is the predicted adjustment (i.e., move) in manipulated variable 

j at future (or current) sampling interval , and  is a weight, which 
must be zero or positive. Increasing  forces the controller to make smaller, 
more cautious  moves. In many cases (but not all) this will have the 
following effects:

• The controller’s setpoint tracking will degrade

• The controller will be less sensitive to prediction inaccuracies (i.e., more 
robust)

Setpoints on Manipulated Variables
In most applications, the controller’s manipulated variables (MVs) should 
move freely (within a constrained region) to compensate for disturbances and 
stepoint changes. An attempt to hold an MV at a point within the region would 
degrade output setpoint tracking. 

On the other hand, some plants have more MVs than output setpoints. In such 
a plant, if all manipulated variables were allowed to move freely, the MV 
values needed to achieve a particular setpoint or to reject a particular 
disturbance would be non-unique. Thus, the MVs would drift within the 
operating space.

A common approach is to define setpoints for “extra” MVs. These setpoints 
usually represent operating conditions that improve safety, economic return, 
etc. The MPC Toolbox design includes an additional term to accommodate such 
cases, as follows:

where  is the manipulated variable setpoint (nominal value) for the jth MV, 
and  is the corresponding weight.

S∆u k( ) wj
∆u∆uj k i 1–+( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

j 1=

nmv

∑
i 1=

M

∑=

∆uj k i 1–+( )
k i 1–+ wj

∆u

wj
∆u

∆uj

Su k( ) wj
u uj uj k i 1–+( )–[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

j 1=

nmv

∑
i 1=

M

∑=

uj
wj

u

2



MIMO Plants
Constraints
Constraints may be either hard or soft. A hard constraint must not be violated. 
Unfortunately, under some conditions a constraint violation might be 
unavoidable (e.g., an unexpected, large disturbance), and a realistic controller 
must allow for this.

The MPC Toolbox does so by softening each constraint, making a violation 
mathematically acceptable, though discouraged. The designer may specify the 
degree of softness in each case, making selected constraints less likely to be 
violated than others. See “Optimization Problem” on page 2-5 for the 
mathematical details.

Briefly, you specify a tolerance band for each constraint. If the tolerance band 
is zero, the constraint is hard (no violation allowed). Increasing the tolerance 
band softens the constraint. 

The tolerance band is not a limit on the constraint violation, however. (If it 
were, you would still have a hard constraint.) You need to view it relative to 
other constraints. 

For example, suppose you have two constraints, one on a temperature and the 
other on a flow rate. You specify a tolerance band of 2 degrees on the 
temperature constraint, and 20 kg/s on the flow rate constraint. The MPC 
Toolbox controller interprets this to mean that violations of these magnitudes 
are of equal concern, and should be handled accordingly.

State Estimation
At the beginning of each sampling instant the controller estimates the current 
plant state. Accurate knowledge of the state improves prediction accuracy, 
which, in turn, improves controller performance. 

If all plant states were measured, the state estimation problem would be 
relatively simple, requiring consideration of measurement noise effects only. 
Unfortunately, the internal workings of a typical plant are unmeasured, and 
the controller must estimate their current values from the available 
measurements. It also estimate the values of any sustained, unmeasured 
disturbances.

The MPC Toolbox provides a default state estimation strategy, which the 
designer may customize. For details, see “State Estimation” on page 2-8.
1-13



1 Introduction

1-1
Blocking
In Figure 1-2 (b), M = 4 and P= 9, and the controller is optimizing the first M 
moves of the prediction horizon, after which the manipulated variable remains 
constant for the remaining P – M = 5 sampling instants.

Figure 1-4 shows an alternative blocked strategy – again with 4 planned moves 
– in which the first occurs at sampling instant k, the next at k+2, the next at 
k+4, and the final at k+6. A block is one or more successive sampling periods 
during which the manipulated variable is constant. The block durations are the 
number of sampling periods in each block. In Figure 1-4 the block durations are 
2, 2, 2, and 3. (Their sum must equal P.)

Figure 1-4:  Blocking Example with 4 Moves

As for the default (unblocked) mode, only the current move, uk, actually goes to 
the plant. Thus, as shown in Figure 1-4, the controller has made a plant 
adjustment at each sampling instant.

So why use blocking? When P >> M (as is generally recommended), and all M 
moves are at the beginning of the horizon, the moves tend to be larger (because 
all but the final move last just one sampling period). Blocking often leads to 
smoother adjustments, all other things being equal.

Sampling Instant

u
min

umax

Past Moves
Planned Moves

k +1 +2 +3 +4 +5 +6 +7 +8 +9-1-2-3-4
4



MIMO Plants
See the subsequent case study examples and the literature for more discussion 
and MIMO design guidelines.
1-15



1 Introduction

1-1
6



2

MPC Problem Setup

Prediction Model (p. 2-2) A discussion of the prediction model used by the 
controller to estimate hypothetical future outputs over 
the prediction horizon.

Optimization Problem (p. 2-5) A mathematical description of the cost function used by 
the controller to optimize control moves over the control 
horizon.

State Estimation (p. 2-8) A state-space model is used to represent the combination 
of the plant model, noise model, and disturbance model.

QP Matrices (p. 2-12) A brief discussion of the mathematical structure of 
matrices associated with the optimization problem.

MPC Computation (p. 2-18) A discussion of the algorithms used for constrained and 
unconstrained model predictive control.

Using Identified Models (p. 2-19) A description of the way identified models are handled
 



2 MPC Problem Setup

2-2
Prediction Model
The linear model used in the MPC Toolbox for prediction and optimization is 
depicted in Figure 2-1.

Figure 2-1:  Model Used for Optimization

The model consists of

• A model of the plant to be controlled, whose inputs are the manipulated 
variables, the measured disturbances, and the unmeasured disturbances

• A model generating the unmeasured disturbances

Note  When defining an MPC controller, you must specify a plant model. You 
do not need to specify a model generating the disturbances, as the controller 
setup assumes by default that unmeasured disturbances are generated by 
integrators driven by white noise (see “Output Disturbance Model” on 
page 2-9 and setindist on page 6-38)

The model of the plant is a linear time-invariant system described by the 
equations

x k 1+( ) Ax k( ) Buu k( ) Bvv k( ) Bdd k( )+ + +=

ym k( ) Cmx k( ) Dvmv k( ) Ddmd k( )+ +=

yu k( ) Cux k( ) Dvuv k( ) Ddud k( ) Duuu k( )+ + +=



Prediction Model
where x(k) is the nx-dimensional state vector of the plant, u(k) is the 
nu-dimensional vector of manipulated variables (MV), i.e., the command 
inputs, v(k) is the nv-dimensional vector of measured disturbances (MD), d(k) 
is the nd-dimensional vector of unmeasured disturbances (UD) entering the 
plant, ym(k) is the vector of measured outputs (MO), and yu(k) is the vector of 
unmeasured outputs (UO). The overall output vector y(k) collects ym(k) and 
yu(k). 

The Model Predictive Control Toolbox accepts both plant models specified as 
LTI objects, and models obtained from input/output data using the System 
Identification Toolbox (IDMODEL objects), see Using Identified Models 
(p. 2-19).

In the above equations d(k) collects both state disturbances (Bd≠0) and output 
disturbances (Dd≠0).

Note  A valid plant model for the MPC Toolbox cannot have direct 
feedthrough of manipulated variables u(k) on the measured output vector 
ym(k).

The unmeasured disturbance d(k) is modeled as the output of the linear time 
invariant system:

 (2-1)

. (2-2)

The system described by the above equations is driven by the random Gaussian 
noise nd(k), having zero mean and unit covariance matrix. For instance, a 
step-like unmeasured disturbance is modeled as the output of an integrator. 
Input disturbance models as in the equations above can be manipulated by 
using the methods getindist on page 6-14 and setindist on page 6-38.

Note  If continuous-time models are supplied, they are internally sampled 
with the controller’s sampling time.

xd k 1+( ) Axd k( ) Bnd k( )+=

d k( ) Cxd k( ) Dnd k( )+=
2-3



2 MPC Problem Setup

2-4
Offsets
In many practical applications, the matrices A, B, C, D of the model 
representing the process to control are obtained by linearizing a nonlinear 
dynamical system, such as

 

,

at some nominal value x=x0, u=u0, v=v0, d=d0. In these equations x′ denotes 
either the time derivative (continuous time model) or the successor x(k+1) 
(discrete time model). As an example, x0, u0, v0, d0 may be obtained by using 
TRIM on a simulink model describing the nonlinear dynamical equations, and 
A, B, C, D by using LINMOD. The linearized model has the form

The matrices A, B, C, D of the model are readily obtained from the Jacobian 
matrices appearing in the equations above.

The linearized dynamics are affected by the constant terms F=f(x0, u0, v0, d0) 
and H=h(x0, u0, v0, d0). For this reason the MPC algorithm internally adds a 
measured disturbance v=1, so that F and H can be embedded into Bv and Dv, 
respectively, as additional columns.

Note  Nonzero offset values d0 for unmeasured disturbances, while relevant 
for obtaining the linearized model matrices, are not relevant for the MPC 
problem setup. In fact, only d-d0 can be estimated from output measurements.

x' f x u v d, , ,( )=

y h x u v d, , ,( )=

x' f x0 u0 v0 d0, , ,( ) ∇xf x0 u0 v0 d0, , ,( ) x x0–( ) ∇uf x0 u0 v0 d0, , ,( ) u u0–( )
∇vf x0 u0 v0 d0, , ,( ) v v0–( ) ∇df x0 u0 v0 d0, , ,( ) d d0–( )+

+ +
+

≅

y h x0 u0 v0 d0, , ,( ) ∇xh x0 u0 v0 d0, , ,( ) x x0–( ) ∇uh x0 u0 v0 d0, , ,( ) u u0–( )
∇vh x0 u0 v0 d0, , ,( ) v v0–( ) ∇dh x0 u0 v0 d0, , ,( ) d d0–( )+

+ +
+
≅



Optimization Problem
Optimization Problem
Assume that the estimates of x(k), xd(k) are available at time k (for state 
estimation see “State Estimation” on page 2-8). The MPC control action at time 
k is obtained by solving the optimization problem

(2-3)

where the subscript “( )j” denotes the j-th component of a vector, “(k+i|k)” 
denotes the value predicted for time k+i based on the information available at 
time k; r(k) is the current sample of the output reference, subject to

with respect to the sequence of input increments {∆u(k|k),…,∆u(m-1+k|k)} and 
to the slack variable ε, and by setting u(k)=u(k-1)+∆u(k|k)*, where ∆u(k|k)* is 
the first element of the optimal sequence.

Note  Although only the measured output vector ym(k) is fed back to the MPC 
controller, r(k) is a reference for all the outputs (measured and unmeasured). 

min
∆u k k( ) … ∆u m 1– k k+( ) ε,, ,

wi 1 j,+
y yj k i 1 k+ +( ) rj k i 1+ +( )–( )

2

wi j,
∆u∆uj k i k+( )

2
wi j,

u uj k i k+( ) ujtarget k i+( )–( )
2

j 1=

nu

∑+

j 1=

nu

∑+

j 1=

ny

∑
⎝

⎠

⎜

⎟

⎜

⎟

⎛

⎞
ρεε2+

i 0=

p 1–

∑
⎩

⎭

⎪

⎪

⎨

⎬

⎪

⎪

⎧

⎫

ujmin i( ) εVj
u

min i( )– uj k i k+( ) ujmax i( ) εVj
u

max i( )+≤ ≤

∆ujmin i( ) εVj
∆u

min i( )– ∆uj k i k+( ) ∆ujmax i( ) εVj
∆u

max i( )+≤ ≤

yjmin i( ) εVj
y
min i( )– yj k i 1+ k+( ) yjmax i( ) εVj

y
max i( )+≤ ≤

∆u k h k+( ) 0 h m … p 1–, ,=,=
ε 0≥

i 0 … p 1–, ,=
2-5



2 MPC Problem Setup

2-6
When the reference r is not known in advance, the current reference r(k) is used 
over the whole prediction horizon, namely r(k+i+1)=r(k) in Equation 2-3. In 
model predictive control the exploitation of future references is referred to as 
anticipative action (or look-ahead or preview). A similar anticipative action can 
be performed with respect to measured disturbances v(k), namely v(k+i)=v(k) if 
the measured disturbance is not known in advance (e.g. is coming from a 
Simulink block) or v(k+i) is obtained from the workspace. In the prediction, 
d(k+i) is instead obtained by setting nd(k+i)=0 in Figure 2-1 and Figure 2-2.

w∆u
i,j, w

u
i,j, w

y
i,j, are nonnegative weights for the corresponding variable. The 

smaller w, the less important is the behavior of the corresponding variable to 
the overall performance index.

uj,min, uj,max, ∆uj,min, ∆uj,max, yj,min, yj,max are lower/upper bounds on the 
corresponding variables. In Equation 2-4, the constraints on u, ∆u, and y are 
relaxed by introducing the slack variable ε≥ 0. The weight ρε on the slack 
variable ε penalizes the violation of the constraints. The larger ρε with respect 
to input and output weights, the more the constraint violation is penalized. The 
Equal Concern for the Relaxation (ECR) vectors Vu

min,Vu
max, V∆u

min, VDu
max, 

Vy
min, Vy

max have nonnegative entries which represent the concern for 
relaxing the corresponding constraint; the larger V, the softer the constraint. 
V=0 means that the constraint is a hard one that cannot be violated. By 
default, all input constraints are hard (Vu

min=Vu
max=V∆u

min=V∆u
max=0) and 

all output constraints are soft (Vy
min=Vy

max=1). As hard output constraints 
may cause infeasibility of the optimization problem (for instance, because of 
unpredicted disturbances, model mismatch, or just because of numerical round 
off), a warning message is produced if Vy

min, Vy
max are smaller than a given 

small value and automatically adjusted at that value. By default, 

(2-4)

Note that also ECRs can be time varying.

Vector utarget(k+i) is a setpoint for the input vector. One typically uses utarget 
if the number of inputs is greater than the number of outputs, as a sort of 
lower-priority setpoint.

As mentioned earlier, only ∆u(k|k) is actually used to compute u(k). The 
remaining samples ∆ u(k+i|k) are discarded, and a new optimization problem 
based on ym(k+1) is solved at the next sampling step k+1.

ρε 105max wi j,
∆u w, i j,

u
wi j,

y,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=



Optimization Problem
The algorithm implemented in the Toolbox uses different procedures 
depending on the presence of constraints. If all the bounds are infinite, then the 
slack variable ε is removed, and the problem in Equation 2-3 and Equation 2-4 
is solved analytically. Otherwise a Quadratic Programming (QP) solver is used. 
The matrices associated with the quadratic optimization problem are described 
in “QP Matrices” on page 2-12. 

Since output constraints are always soft, the QP problem is never infeasible. If 
for numerical reasons the QP problem becomes infeasible, the second sample 
from the previous optimal sequence is applied, i.e. u(k)=u(k-1)+∆*u(k|k-1). 

Note  For reasons of numerical robustness, for constrained MPC problems the 
default value ∆uj,min for unbounded input rates is -10 and the maximum 
allowed lower bound is -1e5. The default value for unconstrained problems is 
minus infinity.
2-7



2 MPC Problem Setup

2-8
State Estimation
As the states x(k), xd(k) are not directly measurable, predictions are obtained 
from a state estimator. In order to provide more flexibility, the estimator is 
based on the model depicted in Figure 2-2.

Figure 2-2:  Model Used for State Estimation

Measurement Noise Model
We assume that the measured output vector ym(k) is corrupted by a 
measurement noise m(k). The measurement noise m(t) is the output of the 
linear time-invariant system

 

.

The system described by these equations is driven by the random Gaussian 
noise nm(k), having zero mean and unit covariance matrix.

xm k 1+( ) Ãxm k( ) B̃nm k( )+=

m k( ) C̃xm k( ) D̃nm k( )+=



State Estimation
Note  The objective of the MPC controller is to bring yu(k) and [ym(k)-m(k)] as 
close as possible to the reference vector r(k). For this reason, the measurement 
noise model producing m(k) is not needed in the prediction model used for 
optimization described in “Prediction Model” on page 2-2.

Output Disturbance Model
In order to guarantee asymptotic rejection of output disturbances, the overall 
model is augmented by an output disturbance model. By default, in order to 
reject constant disturbances due for instance to gain nonlinearities, the output 
disturbance model is a collection of integrators driven by white noise on 
measured outputs. Output integrators are added according to the following 
rule: 

1 Measured outputs are ordered by decreasing output weight (in case of 
time-varying weights, the sum of the absolute values over time is considered 
for each output channel, and in case of equal output weight the order within 
the output vector is followed)

2 By following such order, an output integrator is added per measured 
outputs, unless there is a violation of observability or the user forces it 
(through the OutputVariables.Integrators property described in 
“OutputVariables” on page 8-5).

An arbitrary output disturbance model can be specified through the function 
setoutdist on page 6-43. See also setoutdist on page 6-43 for ways to remove 
the default output integrators.

State Observer
The state observer is designed to provide estimates of x(k), xd(k), xm(k), where 
x(k) is the state of the plant model, xd(k) is the overall state of the input and 
output disturbance model, xm(k) is the state of the measurement noise model. 
The estimates are computed from the measured output ym(k) by the linear 
state observer
2-9



2 MPC Problem Setup

2-1
 

 

 

where “m” denotes the rows of C,D corresponding to measured outputs.

To prevent numerical difficulties in the absence of unmeasured disturbances, 
the gain M is designed using Kalman filtering techniques (see the function 
KALMAN in the Control System Toolbox) on the extended model

 (2-5)

where nu(k) and nv(k) are additional unmeasured white noise disturbances 
having unit covariance matrix and zero mean, that are added on the vector of 
manipulated variables and the vector of measured disturbances, respectively, 
to ease the solvability of the Kalman filter design.

x̂ k k( )
x̂d k k( )

x̂m k k( )

x̂ k k 1–( )
x̂d k k 1–( )

x̂m k k 1–( )

M ym k( ) ŷm k( )–( )+=

x̂ k 1+ k( )
x̂d k 1+ k( )

x̂m k 1+ k( )

Ax̂ k k( ) Buu k( ) Bvv k( ) BdCx̂d k k( )+ + +

Ax̂d k k( )

Ãx̂m k k( )

=

ŷm k( ) Cmx̂ k k 1–( ) Dvmv k( ) DdmCx̂d k k 1–( ) C̃x̂m k k 1–( )+ + +=

x k 1+( )
xd k 1+( )

xm k 1+( )

A BdC 0

0 A 0

0 0 Ã

x k( )
xd k( )

xm k( )

Bu

0
0

u k( )
Bv

0
0

v k( )
BdD 0 Bu Bv

B 0 0 0

0 B̃ 0 0

nd k( )

nm k( )

nu k( )

nv k( )

+ + +=

ym k( ) Cm DdmC C̃

x k( )
xd k( )

xm k( )

Dvmv k( ) Dm D̃ 0 0

nd k( )

nm k( )

nu k( )

nv k( )

+ +=
0



State Estimation
Note  The overall state-space realization of the combination of plant and 
disturbance models must be observable for the state estimation design to 
succeed. The MPC Toolbox first checks for observability of the plant, provided 
that this is given in state-space form. After all models have been converted to 
discrete-time, delay-free, state-space form and combined together, 
observability of the overall extended model is checked (see the note on page 
6-37 and “Construction and Initialization” on page 8-12). 

Note also that observability is only checked numerically. Hence, for large 
models of badly conditioned system matrices, unobservability may be reported 
by the MPC Toolbox even if the system is observable.

See also getestim on page 6-11 and setestim on page 6-36 for details on the 
methods that you can use to access and modify properties of the state 
estimator.
2-11



2 MPC Problem Setup

2-1
QP Matrices 
This section describes the matrices associated with the MPC optimization 
problem described in “Optimization Problem” on page 2-5.

Prediction
Assume for simplicity that the disturbance model in Equation 2-1 and 
Equation 2-2 is a unit gain (i.e., d(k)=nd(k) is a white Gaussian noise). For 
simplicity, denote by

Then, the prediction model given by

.

Consider for simplicity the prediction of the future trajectories of the model 
performed at time k=0. We set nd(i)=0 for all prediction instants i, and obtain

which gives

where

x x
xd

A A BdC

0 A
Bu

Bu

0
Bv

Bv

0
Bd

BdD

B
C C DdC←,←,←,←,←,←

x k 1+( ) Ax k( ) Buu k( ) Bvv k( ) Bdnd k( )+ + +=

y k( ) Cx k( ) Dvv k( ) Ddnd k( )+ +=

y i 0( ) C Aix 0( ) Ai 1– Bu u 1–( ) ∆u j( )

j 0=

h

∑+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Bvv h( )+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

h 0=

i 1–

∑+ Dvv i( )+=

y 1( )
…

y p( )

Sxx 0( ) Su1u 1–( ) Su

∆u 0( )
…

∆u p 1–( )

Hv

v 0( )
…

v p( )

+ + +=
2



QP Matrices
Optimization Variables
Let m be the number of free control moves and denote by z= [z0; ...; zm-1]. Then,

(2-6)

where JM depends on the choice of blocking moves. Together with the slack 
variable ε, vectors z0, ..., zm-1 constitute the free optimization variables of the 
optimization problem (in case of systems with a single manipulated variables, 
z0, ..., zm-1 are scalars).

Sx

CA

CA2

…

CAp

ℜ
pny nx×

∈ Su1,

CBu

CBu CABu+

…

CAhBu

h 0=

p 1–

∑

ℜ
pny nu×

∈= =

Su

CBu 0 … 0

CBu CABu+ CBu … 0

… … … …

CAhBu

h 0=

p 1–

∑ CAhBu

h 0=

p 2–

∑ … CBu

ℜ
pny pnu×

∈=

Hv

CBv Dv 0 … 0

CABv CBv Dv … 0

… … … … …

CAp 1– Bv CAp 2– Bv CAp 3– Bv … Dv

ℜ
pny p 1+( )nv×

∈=

∆u 0( )
…

∆u p 1–( )

JM

z0

…
zm 1–

=

2-13



2 MPC Problem Setup

2-1
Figure 2-3:  Blocking Moves: Inputs and Input Iincrements for moves=[2 3 2]

Consider for instance the blocking moves depicted in Figure 2-3, which 
corresponds to the choice moves=[2 3 2], or, equivalently, 
u(0)=u(1), u(2)=u(3)=u(4), u(5)=u(6), ∆ u(0)=z0, ∆ u(2)=z1, ∆ u(5)=z2, ∆ u(1)=∆ 
u(3)=∆ u(4)=∆ u(6)=0.

Then, the corresponding matrix JM is

JM

I 0 0
0 0 0
0 I 0
0 0 0
0 0 0
0 0 I
0 0 0

=

4



QP Matrices
Cost Function
The function to be optimized is

where

Finally, after substituting u(k), ∆u(k), y(k), J(z) can be rewritten as

(2-7)

J z ε,( )
u 0( )

…
u p 1–( )

utarget 0( )

…
utarget p 1–( )

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞T

W2
u

u 0( )
…

u p 1–( )

utarget 0( )

…
utarget p 1–( )

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

∆u 0( )
…

∆u p 1–( )

T

W2
∆u

∆u 0( )
…

∆u p 1–( )

y 1( )
…

y 1( )

r 1( )
…

r p( )

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞T

W2
y

y 1( )
…

y 1( )

r 1( )
…

r p( )

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ρεε2

+

+

+ +

=

Wu diag w0 1,
u w0 2,

u … w0 nu,
u … wp 1– 1,

u w0p 1– 2,
u … wp 1– nu,

u, , , , , , , ,( )=

W∆u diag w0 1,
∆u w0 2,

∆u … w0 nu,
∆u … wp 1– 1,

∆u w0p 1– 2,
∆u … wp 1– nu,

∆u, , , , , , , ,( )=

Wy diag w1 1,
y w1 2,

y … w1 ny,
y … wp 1,

y wp 2,
y … wp ny,

y, , , , , , , ,( )=

J z ε,( ) ρεε2 zTK∆uz 2
r 1( )
…

r p( )

T

Kr

v 0( )
…

v p( )

Kv u 1–( )TKu

utarget 0( )

…
utarget p 1–( )

T

Kut x 0( )TKx

+ +

+ +

⎝

⎠

⎜

⎟

⎜

⎟

⎜

⎟

⎛

⎞

z constant

+ +

+

=

2-15



2 MPC Problem Setup

2-1
Note  In order to keep the QP problem always strictly convex, if the condition 
number of the Hessian matrix K∆U is larger than 1012, the quantity 
10*sqrt(eps) is added on each diagonal term. This may only occur when all 
input rates are not weighted (W∆u=0) (see note on page 8-8)

Constraints
Let us now consider the limits on inputs, input increments, and outputs along 
with the constraint ε≥ 0.

Note  Upper and lower bounds that are not finite are removed, as well as the 
input and input-increment bounds over blocked moves.

Similarly to what was done for the cost function, we can substitute u(k), ∆u(k), 
y(k), and obtain

ymin 1( ) εVy
min 1( )–

…

ymin p( ) εVy
min p( )–

umin 0( ) εVu
min 0( )–

…

umin p 1–( ) εVu
min p 1–( )–

∆umin 0( ) εV∆u
min 0( )–

…

∆umin p 1–( ) εV∆u
min p 1–( )–

y 1( )
…

y p( )
u 0( )

…
u p 1–( )
∆u 0( )

…
∆u p 1–( )

ymax 1( ) εVy
max 1( )+

…

ymax p( ) εVy
max p( )+

umax 0( ) εVu
max 0( )+

…

umax p 1–( ) εVu
max p 1–( )+

∆umax 0( ) εV∆u
max 0( )+

…

∆umax p 1–( ) εV∆u
max p 1–( )+

≤ ≤
6



QP Matrices
(2-8)

where matrices Mz,Mε,Mlim,Mv,Mu,Mx are obtained from the upper and lower 
bounds and ECR values.

The matrices of the QP problem are built in function mpc_buildmat.

Mzz Mεε Mlim Mv

v 0( )
…

v p( )

Muu 1–( ) Mxx 0( )+ + +≤+
2-17



2 MPC Problem Setup

2-1
MPC Computation
This section describes how the MPC optimization problem is solved at each 
time step k (in mpcmove, mpc_sfun.dll, and mpcloop_engine.dll) by using the 
matrices built at initialization described in “QP Matrices” on page 2-12.

Unconstrained MPC
The optimal solution is computed analytically:

and the MPC controller sets ∆u(k)=z*0, u(k)=u(k-1)+∆u(k).

Constrained MPC
The optimal solution z*, ε* is computed by solving the quadratic program 

described in Equation 2-7 and Equation 2-8, using the QP solver coded in the 

qpsolver.dll function (see qpdantz on page 6-33 for more details).

z∗ K 1–
∆u

r 1( )
…

r p( )

T

Kr

v 0( )
…

v p( )

Kv u 1–( )TKu

utarget 0( )

…
utarget p 1–( )

T

Kut x 0( )TKx+ + + +

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞T

–=
8



Using Identified Models
Using Identified Models
The MPC Toolbox is able to handle plant models generated by the System 
Identification Toolbox from input/output measurements. 

The MPC Toolbox labels control input signals as ‘Manipulated’, measured 
input disturbances as ‘Measured’, and unmeasured input disturbances as 
‘Unmeasured’. On the other hand, the System Identification Toolbox has a 
different naming rule, as it calls ‘Measured’ the inputs that are measurable 
quantities, and ‘Noise’ those that are not.

When you specify an identified model in the MPC constructor as the plant 
model, the MPC Toolbox treats ‘Noise’ signals as ‘Unmeasured’ input signals, 
and ‘Measured’ signals as ‘Manipulated’ signals, assuming that all measured 
inputs are also manipulated variables. You can later change later signal types, 
for instance to specify that some measured inputs are measured disturbances, 
rather than manipulated variables (See setname on page 6-42). 

The MPC Toolbox internally converts the identified model you have provided 
as a plant model into the classical (A,B,C,D) state-space format. The columns 
of the B matrix originally related to ‘Noise’ channels are treated as the effect of 
unmeasured input disturbances on the state of the plant. On the other hand, 
the columns of the D matrix related to ‘Noise’ channels as treated as the effect 
of measurement noise superimposed on the output signal. Accordingly, the 
MPC Toolbox treats as the plant model the state-space model obtained from 
(A,B,C,D) by zeroing the columns of D related to ‘Noise’ channels. Those 
columns are instead used as a static noise model, or cascaded to an existing 
noise model if you have specified one. A unit static gain is assumed as the 
disturbance model, unless you have specified another one.
2-19



2 MPC Problem Setup

2-2
0



3

MPC Simulink Library

MPC Controller Block (p. 3-2) A discussion of the Simulink block representing an MPC 
controller as defined by an MPC object.
 



3 MPC Simulink Library

3-2
MPC Controller Block

Opening the Library
The MPC Simulink Library provides a single block representing the MPC 
controller.

The library can be opened from the main Simulink library or by typing mpclib 
from the command prompt.

Figure 3-1:  MPC Simulink Library

After copying the MPC Controller block in your diagram, you can double-click 
on the block and open the mask window.



MPC Controller Block
MPC Controller Block Mask

Figure 3-2:  MPC Controller Block Mask

The mask requires that you specify a valid MPC controller object. There are 
three ways of providing an MPC controller object:

1 In the MPC controller edit box, enter the name of an MPC object that exists 
in the workspace

2 Enter the name of an MPC object that exists in the workspace and then click 
the Design button to open the MPC Design Tool and design the MPC 
controller object there. 

3 Click the Design button without specifying an MPC controller object. The 
MPC Controller block prompts you to enter the number of manipulated 
varibales then will automatically to construct a default MPC controller by 
3-3



3 MPC Simulink Library

3-4
linearizing the plant model from the Simulink diagram. This option requires 
Simulink Control Design. See “Importing a Plant Model” on page 5-9 for 
more information about creating linearized plant models with the MPC 
Toolbox. Refer to the Simulink Control Design documentation for more 
information about the linearization process.

Note  Closed-loop simulations can be run while the MPC controller is edited 
in the MPC Design Tool. In this case, the controller parameters used for 
simulating the Simulink diagram are those currently specified in the MPC 
Design Tool, so that the parameters of the controller can be more easily tuned. 
Once the MPC Design Tool is closed, the designed controller must be exported 
as an MPC object to the workspace in order to be used in simulation.

Look Ahead and Signals from the Workspace
Reference and measured disturbance signals, by default, are taken from the 
Simulink diagram. They can be taken instead from the workspace. In this case, 
store the signal in a structure having the same format as used in the Simulink 
From Workspace and To Workspace blocks. This requires two fields: time 
and signals.

For example, to specify the sinusoidal reference signal sin(t) over a time 
horizon of 10 seconds, assuming an MPC controller’s sampling time Ts, use

time=(0:Ts:10);
ref.time=time;
ref.signals.values=sin(time);

An alternative would be to run a separate Simulink simulation to create the 
stored signal. Use the blocks required to define the signal (e.g., Sine in the 
above example), and store the result using a To Workspace block.

The Look ahead check box enables an anticipative action on the corresponding 
signal. It can only be enabled if the signal comes from the workspace.

See the demo mpcpreview for an illustrative example of enabling preview and 
reading signals from the workspace.



MPC Controller Block
Initialization
The initial controller state must be a valid mpcstate object. See “MPC State 
Object” on page 8-13.

Using the MPC Toolbox with Real-Time Workshop
The C sources of the S-function executing the MPC Controller Block code are 
available in the mpcutils/src directory. You can build a real-time executable 
by pressing Ctrl+B on your Simulink diagram to invoke Real-Time Workshop® 
and build the model. 

In some cases, it is necessary to copy the source files (mpc_sfun.c, mpc_sfun.h, 
mpc_common.c, mat_macros.h, dantzgmp.h, dantzgmp_solver.c) to a visible 
directory, such as the current directory '.', or 'C:\MATLAB\rtw\c\src'.

The MPC Controller block can be also used to produce real-time executables 
that run under xPC Target. 
3-5



3 MPC Simulink Library

3-6



4

Case-Study Examples

This chapter describes some typical MPC applications. Familiarity with LTI models (from the Control 
System Toolbox) and Simulink block diagrams will make the examples easier to understand, but you 
can skip the modeling details if you wish.

The first example designs a servomechanism controller. The specifications require a fast servo 
response despite constraints on a plant input and a plant output.

The second example controls a paper machine headbox. The process is nonlinear, and has three 
outputs, two manipulated inputs, and two disturbance inputs, one of which is measured for 
feedforward control.

Servomechanism Controller (p. 4-2) MPC Toolbox design of a servomechanism. Uses 
MPCTOOL GUI and commands.

Paper Machine Process Control 
(p. 4-26)

Application to a paper machine headbox. Involves 
multiple signals. Illustrates use of MPCTOOL GUI and 
Simulink.
 



4 Case-Study Examples

4-2
Servomechanism Controller

Figure 4-1:  Position Servomechanism Schematic

System Model
A position servomechanism consists of a DC motor, gearbox, elastic shaft, and 
a load (see Figure 4-1). The differential equations representing this system are

where V is the applied voltage, T is the torque acting on the load,  is 
the load’s angular velocity,  is the motor shaft’s angular velocity, and 
the other symbols represent constant parameters (see Table 4-1 for more 
information on these).

If we define the state variables as , we can convert the 
above model to an LTI state-space form:

ω· L
kθ
JL
------- θL

θM
ρ

-------–⎝ ⎠
⎛ ⎞–

βL
JL
-------ωL–=

ω· M
kT
JM
--------

V kTωM–
R

--------------------------⎝ ⎠
⎛ ⎞ βMωM

JM
-----------------–

kθ
ρJM
------------ θL

θM
ρ

-------–⎝ ⎠
⎛ ⎞+=

ωL θ· L=
ωM θ· M=

xp θL ωL θM ωM

T
=



Servomechanism Controller
Table 4-1:  Parameters Used in the Servomechanism Model

Symbol Value (SI 
units)

Definition

1280.2 Torsional rigidity

10 Motor constant

0.5 Motor inertia

50 Load inertia

20 Gear ratio

0.1 Motor viscous friction coefficient

25 Load viscous friction coefficient

R 20 Armature resistance

x·p

0 1 0 0
kθ
JL
-------–

βL
JL
-------–

kθ
ρJL
---------- 0

0 0 0 1

kθ
ρJM
------------ 0

kθ

ρ2JM

--------------–
βM kT

2 R⁄+
JM

-----------------------------–

xp

0
0
0

kT
RJM
-------------

V+=

θL 1 0 0 0 xp=

T kθ 0
kθ
ρ
------– 0 xp=

kθ

kT

JM

JL JM

ρ

βM

βL
4-3



4 Case-Study Examples

4-4
Control Objectives and Constraints
The controller must set the load’s angular position, , at a desired value by 
adjusting the applied voltage, V. The only measurement available for feedback 
is .

The elastic shaft has a finite shear strength, so the torque, T, must stay within 
specified limits

 N m

Also, the applied voltage must stay within the range

 V

From an input/output viewpoint, the plant has a single input, V, which is 
manipulated by the controller. It has two outputs, one measured and fed back 
to the controller, , and one unmeasured, T.

Defining the Plant Model
The first step in a design is to define the plant model. The following commands 
are from the mpcdemos file mpcmotormodel.m, which you can run instead of 
entering the commands manually.

% DC-motor with elastic shaft
%
%Parameters (MKS)
%-----------------------------------------------------------
Lshaft=1.0;      %Shaft length
dshaft=0.02;     %Shaft diameter
shaftrho=7850;   %Shaft specific weight (Carbon steel)
G=81500*1e6;     %Modulus of rigidity
tauam=50*1e6;    %Shear strength
Mmotor=100;      %Rotor mass
Rmotor=.1;       %Rotor radius
Jmotor=.5*Mmotor*Rmotor^2; %Rotor axial moment of inertia                      
Bmotor=0.1;      %Rotor viscous friction coefficient (A CASO)
R=20;            %Resistance of armature
Kt=10;           %Motor constant
gear=20;         %Gear ratio

θL

θL

T 78.5≤

V 220≤

θL



Servomechanism Controller
Jload=50*Jmotor; %Load inertia
Bload=25;        %Load viscous friction coefficient
Ip=pi/32*dshaft^4;               %Polar momentum of shaft 
(circular) section
Kth=G*Ip/Lshaft;                %Torsional rigidity 
(Torque/angle)
Vshaft=pi*(dshaft^2)/4*Lshaft;   %Shaft volume
Mshaft=shaftrho*Vshaft;          %Shaft mass
Jshaft=Mshaft*.5*(dshaft^2/4);   %Shaft moment of inertia
JM=Jmotor; 
JL=Jload+Jshaft;
Vmax=tauam*pi*dshaft^3/16; %Maximum admissible torque
Vmin=-Vmax;

%Input/State/Output continuous time form
%----------------------------------------------------------
AA=[0             1             0                 0;
    -Kth/JL       -Bload/JL     Kth/(gear*JL)     0;
    0             0             0                 1;
    Kth/(JM*gear) 0             -Kth/(JM*gear^2)  
-(Bmotor+Kt^2/R)/JM];
                
BB=[0;0;0;Kt/(R*JM)];
Hyd=[1 0 0 0];
Hvd=[Kth 0 -Kth/gear 0];
Dyd=0;
Dvd=0;

% Define the LTI state-space model
sys=ss(AA,BB,[Hyd;Hvd],[Dyd;Dvd]);

Controller Design Using MPCTOOL
The servomechanism model is linear, so you can use the MPC Toolbox design 
tool (mpctool) to configure a controller and test it. 
4-5



4 Case-Study Examples

4-6
Note  To follow this example on your own system, first create the 
servomechanism model as explained above. This defines the variable sys in 
your MATLAB workspace.

Opening MPCTOOL and Importing a Model
To begin, open the design tool by typing the following at the MATLAB prompt:

mpctool

Once the design tool has appeared, click the Import Plant button. The Plant 
Model Importer will appear (see Figure 4-2). 

By default, the Import from radio buttons are set to import from the MATLAB 
workspace, and the box at the upper right lists all LTI models defined there. In 
Figure 4-2, sys is the only available model, and it is selected. The Properties 
window lists the selected model’s key attributes.

Figure 4-2:  Import Dialog with the Servomechanism Model Selected



Servomechanism Controller
Make sure your servomechanism model, sys, is selected. Then click the Import 
button. You won’t be importing more models, so close the import dialog 
window.

Meanwhile, the model has loaded, and tables now appear in the design tool’s 
main window (see Figure 4-3). Note the diagram at the top, which ennumerates 
the model’s input and output signals.

Figure 4-3:  Design Tool After Importing the Plant Model and Specifying Signal Properties

Specifying Signal Properties
It’s essential to specify signal types before going on. By default, the design tool 
assumes all plant inputs are manipulated, which is correct in this case. But it 
also assumes all outputs are measured, which is not. Specify that the second 
4-7



4 Case-Study Examples

4-8
output is unmeasured by clicking on the appropriate table cell and selecting 
the Unmeasured option.

You also have the option to change the default signal names (In1, Out1, Out2) 
to something more meaningful (e.g., V, ThetaL, T), enter descriptive 
information in the blank Description and Units columns, and specify a 
nominal initial value for each signal (the default is zero).

After you’ve entered all your changes, you should see a view similar to 
Figure 4-3. Notice that the upper graphic designates one output as measured, 
the other as unmeasured.

Navigation Using the Tree View
Now consider the design tool’s left-hand frame. This tree is an ordered 
arrangement of nodes. Selecting (clicking) a node causes the corresponding 
view to appear in the right-hand frame. When the design tool starts, it creates 
a root node named MPCdesign and selects it, as in Figure 4-3. 

The Plant models node is next in the hierarchy. Click on it to list the plant 
models being used in your design. (Each model name is editable.) The middle 
section displays the selected model’s properties. There is also a space to enter 
notes describing the model’s special features. Buttons allow you to import a 
new model or delete one you no longer need.

The next node is Controllers. You might see a + sign to its left, indicating that 
it contains subnodes. If so, click on the + sign to expand the tree (as shown in 
Figure 4-3). All the controllers in your design will appear here. By default, you 
have one: MPC1. In general, you might opt to design and test several 
alternatives.

Select Controllers to see a list of all controllers, similar to the Plant models 
view. The table columns show important controller settings: the plant model 
being used, the controller sampling period, and the prediction and control 
horizons. All are editable. For now, leave them at their default values.

The buttons on the Controllers view allow you to:

• Import a controller designed previously and stored either in your workspace 
or in a MAT-file

• Export the selected controller to your workspace

• Create a New controller, which will be initialized to the MPC Toolbox 
defaults



Servomechanism Controller
• Copy the selected controller to create a duplicate that you can modify

• Delete the selected controller

Specifying Controller Properties
Select the MPC1 subnode. The main panel should change to the controller 
design view shown in Figure 4-4.

Figure 4-4:  Controller Design View, Models and Horizons Pane

If the selected Prediction model is continuous-time, as in this example, the 
Control interval (sampling period) defaults to 1. You need to change this to an 
application-appropriate value. Set it to 0.1 seconds (as shown in Figure 4-4). 
Leave the other values at their defaults for now.
4-9



4 Case-Study Examples

4-1
.

Figure 4-5:  Controller Design View, Constraints Pane

Specifying Constraints
Next, select the Constraints tab. The view shown in Figure 4-5 appears. Enter 
the appropriate constraint values. Leaving a field blank implies that there is 
no constraint.

In general, it’s good practice to include all known manipulated variable 
constraints, but it’s unwise to enter constraints on outputs unless they are an 
essential aspect of your application. The limit on applied torque is such a 
constraint, as are the limits on applied voltage. The angular position has 
physical limits but the controller shouldn’t attempt to enforce them, so you 
should leave the corresponding fields blank (see Figure 4-5)
0



Servomechanism Controller
The Max down rate should be nonpositive (or blank). It limits the amount a 
manipulated variable can decrease in a single control interval. Similarly, the 
Max up rate should be nonnegative. It limits the increasing rate. Leave both 
unconstrained (i.e., blank).

The shaded columns can’t be edited. If you want to change this descriptive 
information, select the root node view and edit its tables. Such changes apply 
to all controllers in the design.

Weight Tuning
Next, select the Weight Tuning tab to obtain a view like that shown in 
Figure 4-6.

The weights specify trade-offs in the controller design. First consider the 
Output weights. The controller will try to minimize the deviation of each 
output from its setpoint or reference value. For each sampling instant in the 
prediction horizon, the controller multiplies predicted deviations for each 
output by the output’s weight, squares the result, and sums over all sampling 
instants and all outputs. One of the controller’s objectives is to minimize this 
sum, i.e., to provide good setpoint tracking (See “Optimization Problem” on 
page 2-5 for more details.)

Here, the angular position should track its setpoint, but the applied torque can 
vary, provided that it stays within the specified constraints. Therefore, set the 
torque’s weight to zero, which tells the controller that setpoint tracking is 
unnecessary for this output.

Similarly, it’s acceptable for the applied voltage to deviate from nominal (it 
must in order to change the angular position!). Its weight should be zero (the 
default for manipulated variables). On the other hand, it’s probably 
undesirable for the controller to make drastic changes in the applied voltage. 
The Rate weight penalizes such changes. Use the default, 0.1.

When setting the rates, the relative magnitudes are more important than the 
absolute values, and you must account for differences in the measurement 
scales of each variable. For example, if a deviation of 0.1 units in variable A is 
just as important as a deviation of 100 units in variable B, variable A’s weight 
must be 1000 times larger than that for variable B.
4-11



4 Case-Study Examples

4-1
Figure 4-6:  Controller Design View, Weight Tuning Pane

The tables allow you to weight individual variables. The slider at the top 
adjusts an overall trade-off between controller agressiveness and setpoint 
tracking. Moving the slider to the left places a larger overall penalty on 
manipulated variable changes, making them smaller. This usually increases 
controller robustness, but setpoint tracking becomes more sluggish.

The Estimation tab allows you to adjust the controller’s response to 
unmeasured disturbances (not used in this example).
2



Servomechanism Controller
.

Figure 4-7:  Simulation Settings View for “Scenario1”

Defining a Simulation Scenario
If you haven’t already done so, expand the Scenarios node to show the 
Scenario1 subnode (see Figure 4-3). Select Scenario1 to obtain the view 
shown in Figure 4-7.

A scenario is a set of simulation conditions. As shown in Figure 4-7, you choose 
the controller to be used (from among controllers in your design), the model to 
act as the plant, and the simulation duration.

You must also specify all setpoints and disturbance inputs. 
4-13



4 Case-Study Examples

4-1
Duplicate the settings shown in Figure 4-7, which will test the controller’s 
servo response to a unit-step change in the angular position setpoint. All other 
inputs are being held constant at their nominal values. 

Note  The ThetaL and V unmeasured disturbances allow you to simulate 
additive disturbances to these variables. By default, these disturbances are 
turned off, i.e., zero.

The Look ahead option designates that all future setpoint variations are 
known. In that case, the controller can adjust the manipulated variable(s) in 
advance to improve setpoint tracking. This would be unusual in practice, and 
is not being used here.
. 

Figure 4-8:  Response to Unit Step in the Angular Position Setpoint
4



Servomechanism Controller
Running a Simulation
Once you’re ready to run the scenario, click the Simulate button or the green 
arrow on the toolbar.

Note  The green arrow tool is available from any view once you’ve defined at 
least one scenario. It runs the active scenario, i.e., the one most recently 
selected or modified.

We obtain the results shown in Figure 4-8. The blue curves are the output 
signals, and the gray curves are the corresponding setpoints. The response is 
very sluggish, and hasn’t settled within the 30 second simulation period.

Note  The window shown in Figure 4-8 provides many of the customization 
features available in the Control System Toolbox ltiview and sisotool 
displays. Try clicking on a curve to obtain the numerical characteristics of the 
selected point, or right-clicking in the plot area to obtain a customization 
menu.

The corresponding applied voltage adjustments appear in a separate window 
(not shown) and are also very sluggish. 

On the positive side, the applied torque stays well within bounds, as does the 
applied voltage.

Retuning to Achieve a Faster Servo Response
To obtain a more rapid servo response, navigate to the MPC1 Weight Tuning 
pane (select the MPC1 node to get the controller design view, then select the 
Weight Tuning tab) and move the slider all the way to the right. Then click on 
the green arrow in the toolbar. Your results should now resemble Figure 4-9 
and Figure 4-10.

The angular position now settles within 10 seconds following the step. The 
torque approaches its lower limit, but doesn’t exceed it (see Figure 4-9) and the 
applied voltage stays within its limits (See Figure 4-10).
4-15



4 Case-Study Examples

4-1
.

Figure 4-9:  Faster Servo Response

Figure 4-10:  Manipulated Variable Adjustments Corresponding to Figure 4-9
6



Servomechanism Controller
Modifying the Scenario
Finally, increase the step size to π radians (select the Scenario1 node and edit 
the tabular value). 

As shown in Figure 4-11 and Figure 4-12, the servo response is essentially as 
good as before, and we avoid exceeding the torque constraint at -78.5 Nm, even 
though the applied voltage is saturated for about 2.5 seconds (see Figure 4-12).

Figure 4-11:  Servo Response for Step Increase of π Radians
4-17



4 Case-Study Examples

4-1
Figure 4-12:  Voltage Adjustments Corresponding to Figure 4-11.

Saving Your Work
Once you’re satisfied with a controller’s performance, you can export it to the 
workspace, for use in a Simulink block diagram or for analysis (or you can save 
it in a MAT-file). 

To export a controller, right-click on its node and select Export from the 
resulting menu (or select the Controllers node, select the controller in the list, 
and click the Export button). A dialog like that shown in Figure 4-13 will 
appear.

The Controller source is the design from which you wish to extract a 
controller. There’s only one in this example, but in general you might be 
working on several simultaneously. The Controller to export choice defaults 
to the controller most recently selected. Again, there’s no choice in this case, 
but there could be in general. The Name to assign edit box allows you to 
rename the exported controller. (This will not change its name in the design 
tool.)
8



Servomechanism Controller
Figure 4-13:  Exporting a Controller to the Workspace

Note  When you exit the design tool you will be prompted to save the entire 
design in a MAT file. This allows you to reload it later using the File/Load 
menu option or the Load icon on the toolbar.

Using MPC Toolbox Commands
Once you’ve become familiar with the toolbox, you may find it more convenient 
to build a controller and run a simulation using commands.

For example, suppose that you’ve already defined the model as discussed in 
“Defining the Plant Model” on page 4-4. Consider the following command 
sequence:

ManipulatedVariables = struct('Min', -220, 'Max', 220, 'Units', 
'V');
OutputVariables(1) = struct('Min', -Inf, 'Max', Inf, 'Units', 
'rad');
OutputVariables(2) = struct('Min', -78.5, 'Max', 78.5, 'Units', 
'Nm');
Weights = struct('Input', 0, 'InputRate', 0.05, 'Output', [10 0]);
Model.Plant = sys;
Model.Plant.OutputGroup = {[1], 'Measured' ; [2], 'Unmeasured'};  
Ts = 0.1;
PredictionHorizon = 10;
ControlHorizon = 2;
4-19



4 Case-Study Examples

4-2
This creates several structure variables. For example, ManipulatedVariables 
defines the display units and constraints for the applied voltage (the 
manipulated plant input). Weights defines the tuning weights shown in 
Figure 4-6 (but the numerical values used here provide better performance). 
Model designates the plant model (stored in sys, which we defined earlier). The 
code also sets the Model.Plant.OutputGroup property to designate the second 
output as unmeasured.

Constructing an MPC Object
Use the mpc command to construct an MPC object called ServoMPC:

ServoMPC = mpc(Model, Ts, PredictionHorizon, ControlHorizon);

Like the LTI objects used to define linear, time-invariant dynamic models, an 
MPC object contains a complete definition of a controller. 

Setting, Getting, and Displaying Object Properties
Once you’ve constructed an MPC object, you can change its properties as you 
would for other objects. For example, to change the prediction horizon, you 
could use one of the following commands:

ServoMPC.PredictionHorizon = 12;

or

set(ServoMPC, 'PredictionHorizon', 12);

For a listing of all the object’s properties, you could type

get(ServoMPC)

To access a particular property (e.g., the control horizon), you could type

M = get(ServoMPC, 'ControlHorizon');

or

M = ServoMPC.ControlHorizon;

You can also set multiple properties simultaneously. 

Set the following properties before continuing with this example:

set(ServoMPC, 'Weights', Weights, ...
'ManipulatedVariables', ManipulatedVariables, ...
0



Servomechanism Controller
'OutputVariables', OutputVariables);

Typing the name of an object without a terminating semicolon generates a 
formatted display of the object’s properties. You can achieve the same effect 
using the display command:

display(ServoMPC)

Running a Simulation
The sim command performs a linear simulation. For example, the following 
code sequence defines constant setpoints for the two outputs, then runs a 
simulation. 

TimeSteps = round(10/Ts);
r = [pi 0];
[y, t, u] = sim(ServoMPC, TimeSteps, r);

By default, the model used to design the controller (stored in ServoMPC) also 
represents the plant. 

The sim command saves the output and manipulated variable sequences in 
variables y and u. For example,

subplot(311)
plot(t, y(:,1), [0 t(end)], pi*[1 1])
title('Angular Position (radians)');
subplot(312)
plot(t, y(:,2), [0 t(end)], [-78.5 -78.5])
title('Torque (nM)')
subplot(313)
stairs(t, u)
title('Applied Voltage (volts)')
xlabel('Elapsed Time (seconds)')

produces the custom plot shown in Figure 4-14. The plot includes the angular 
position’s setpoint. The servo response settles within 5 seconds with no 
overshoot. It also displays the torque’s lower bound, which becomes active after 
about 0.9 seconds but isn’t exceeded. The applied voltage saturates between 
about 0.5 and 2.8 seconds, but the controller performs well despite this.
4-21



4 Case-Study Examples

4-2
Figure 4-14:  Plotting the Output of the Sim Command
2



Servomechanism Controller
Using MPC Tools in Simulink
Figure 4-15 is a Simulink block diagram for the servomechanism example. 
Most of the blocks are from the standard Simulink library. There are two 
exceptions:

• Servomechanism Model is an LTI System block from the Control System 
Toolbox library. The LTI model sys (which must exist in the workspace) 
defines its dynamic behavior. To review how to create this model, see 
“Defining the Plant Model” on page 4-4.

• MPC Controller is from the MPC Blocks library. Figure 4-16 shows the 
dialog box obtained by double-clicking on this block. You need to supply an 
MPC object, and ServoMPC is being used here. It must be in the Workspace 
before you run a simulation. The Design button opens the design tool, which 
allows you to create or modify the object. To review how to use commands to 
create ServoMPC, see “Constructing an MPC Object” on page 4-20.

. 

Figure 4-15:  Block Diagram for the Servomechanism Example
4-23



4 Case-Study Examples

4-2
Figure 4-16:  MPC Toolbox Simulink Block Dialog

The key features of the diagram are as follows:

• The MPC Controller output is the plant input. The Voltage Scope block plots 
it (yellow curve). Minimum and maximum voltage values are shown as 
magenta and cyan curves.

• The plant output is a vector signal. The first element is the measured 
angular position. The second is the unmeasured torque. A Demux block 
separates them. The angular position feeds back to the controller and plots 
on the Angle scope (yellow curve). The torque plots on the Torque scope (with 
its lower and upper bounds).

• The position setpoint varies sinusoidally with amplitude π radians and 
frequency 0.4 rad/s. It also appears on the Angle scope (magenta curve).

Figure 4-17 shows the scope displays for a 20-second simulation. The angular 
position tracks the sinusoidal setpoint variations well despite saturation of the 
applied voltage. The setpoint variations are more gradual than the step 
changes used previously, so the torque stays well within its bounds.
4



Servomechanism Controller
Figure 4-17:  Servomechanism Simulation Scopes
4-25



4 Case-Study Examples

4-2
Paper Machine Process Control

Figure 4-18:  Schematic of Paper Machine Headbox Elements

Ying et al. [1] studied the control of consistency (percentage pulp fibers in 
aqueous suspension) and liquid level in a paper machine headbox, a schematic 
of which is shown in Figure 4-18. The process model is a set of ordinary 
differential equations (ODEs) in bilinear form. The states are

where H1 is the liquid level in the feed tank, H2 is the headbox liquid level, N1 
is the feed tank consistency, and N2 is the headbox consistency. The measured 
outputs are

The primary control objectives are to hold H2 and N2 at setpoints. There are 
two manipulated variables

where Gp is the flow rate of stock entering the feed tank, and Gw is the recycled 
white water flow rate. The consistency of stock entering the feed tank, Np, is a 
measured disturbance.

The white water consistency is an unmeasured disturbance.

Feed Tank Headbox Wire

H1, N1 H2, N2

White Water: Gw, Nw 

Wet Paper

Stock: Gp, Np 

x H1 H2 N1 N2

T
=

y H2 N1 N2

T
=

u Gp Gw

T
=

v Np=
6



Paper Machine Process Control
Variables are normalized. All are zero at the nominal steady state and have 
comparable numerical ranges. Time units are minutes. The process is 
open-loop stable.

The mpcdemos folder contains file mpc_pmmodel.m, which implements the 
nonlinear model equations as a Simulink S-function. The input sequence is Gp, 
Gw, Np, Nw, and the output sequence is H2, N1, N2.

Linearizing the Nonlinear Model
The paper machine headbox model is easy to linearize analytically, yielding the 
following state space matrices:

A = [-1.9300         0         0         0
    0.3940   -0.4260         0         0
         0         0   -0.6300         0
    0.8200   -0.7840    0.4130   -0.4260];
B = [1.2740    1.2740         0         0
         0         0         0         0
    1.3400   -0.6500    0.2030    0.4060
         0         0         0         0];
C = [0    1.0000         0         0
         0         0    1.0000         0
         0         0         0    1.0000];
D = zeros(3,4);

Use these to create a continuous-time LTI state-space model, as follows:

PaperMach = ss(A, B, C, D);
PaperMach.InputName = {'G_p', 'G_w', 'N_p', 'N_w'};
PaperMach.OutputName = {'H_2', 'N_1', 'N_2'};

(The last two commands are optional; they improve plot labeling.)

As a quick check of model validity, plot its step responses as follows:

step(PaperMach);

The results appear in Figure 4-19. Note the following:

• The two manipulated variables affect all three outputs.

d Nw=
4-27



4 Case-Study Examples

4-2
• They have nearly identical effects on H2.

• The  pairing exhibits an inverse response.

These features make it difficult to achieve accurate, independent control of H2 
and N2.

Figure 4-19:  Linearized Paper Machine Model’s Step Responses

Gw N2→
8



Paper Machine Process Control
MPC Design
Type

mpctool

to open the mpc design tool. Import your LTI PaperMach model as described in 
“Opening MPCTOOL and Importing a Model” on page 4-6. 

Next, define signal properties, being sure to designate Np and Nw as measured 
and unmeasured disturbances, respectively. Your specifications should 
resemble Figure 4-20.

Figure 4-20:  Signal Properties for the Paper Machine Application

Initial Controller Design
If necessary, review “Specifying Controller Properties” on page 4-9. Then click 
the MPC1 node and specify the following controller parameters (leaving others 
at their default values):

• Models and Horizons. Control interval = 2 minutes

• Constraints. For both Gp and Gw, Minimum = -10, Maximum = 10, Max 
down rate = -2, Max up rate = 2. 

• Weight Tuning. For both Gp and Gw, Weight = 0, Rate weight = 0.4. 
For N1, Weight = 0. (Other outputs have Weight = 1.)
4-29



4 Case-Study Examples

4-3
Servo Response
Finally, select the Scenario1 node and define a servo-response test:

• Duration = 30

• H2 setpoint = 1 (constant)

Simulate the scenario. You should obtain results like those shown in 
Figure 4-21 and Figure 4-22. 

Figure 4-21:  Servo Response for Unit Step in Headbox Level Setpoint
0



Paper Machine Process Control
Figure 4-22:  Manipulated Variable Moves Corresponding to Figure 4-21

Weight Tuning 
The response time is about 8 minutes. We could reduce this by decreasing the 
control interval, reducing the manipulated variable rate weights, and/or 
eliminating the up/down rate constraints. The present design uses a 
conservative control effort, which would usually improve robustness, so we will 
continue with the current settings.

Note the steady-state error in N1 (it’s about -0.25 units in Figure 4-21). There 
are only two manipulated variables, so it’s impossible to hold three outputs at 
setpoints. We don’t have a setpoint for N1 so we have set its weight to zero (see 
controller settings in “Initial Controller Design” on page 4-29). Otherwise, all 
three outputs would have exhibited steady-state error (try it).

Consistency control is more important than level control. Try decreasing the H2 
weight from 1 to 0.2. You should find that the peak error in N2 decreases by 
almost an order of magnitude, but the H2 response time increases from 8 to 
about 18 minutes (not shown). Use these modified output weights in 
subsequent tests.
4-31



4 Case-Study Examples

4-3
Feedforward Control
To configure a test of the controller’s feedforward response, define a new 
scenario by clicking on the Scenarios node, clicking the New button, and 
renaming the new scenario Feedforward (by editing its name in the tree or the 
summary list). 

In the Feedforward scenario, define a step change in the measured 
disturbance, Np, with Initial value = 0, Size = 1, Time = 10. All output 
setpoints should be zero. Set the Duration to 30 time units.

If response plots from the above servo response tests are still open, close them. 
Simulate the Feedforward scenario. You should find that the H2 and N2 
outputs deviate very little from their setpoints (not shown).

Experiment with the “look ahead” feature. First, observe that in the simulation 
just completed the manipulated variables didn’t begin to move until the 
disturbance occurred at t = 10 minutes. Return to the Feedforward scenario, 
select the Look ahead option for the measured disturbance, and repeat the 
simulation. 

Notice that the manipulated variables begin changing in advance of the 
disturbance. This happens because the look ahead option uses known future 
values of the disturbance when computing its control action. For example, at 
time t = 0 the controller is using a prediction horizon of 10 control intervals (20 
time units), so it “sees” the impending disturbance at t = 10 and begins to 
prepare for it. The output setpoint tracking improves slightly, but it was 
already so good that the improvement is insignificant. Also, it’s unlikely that 
there would be advanced knowledge of a consistency disturbance, so clear the 
Look ahead check box for subsequent simulations.

Unmeasured Input Disturbance
To test the response to unmeasured disturbances, define another new scenario 
called Feedback. Configure it as for Feedforward, but set the measured 
disturbance, Np, to zero (constant), and the unmeasured disturbance, Nw, to 
1.0 (constant). This simulates a sudden, sustained, unmeasured disturbance 
occurring at time zero.

Running the simulation should yield results like those in Figure 4-23. The two 
controlled outputs (H2 and N2) exhibit relatively small deviations from their 
setpoints (which are zero). The settling time is longer than for the servo 
response (compare to Figure 4-21) which is typical.
2



Paper Machine Process Control
Figure 4-23:  Feedback Scenario: Unmeasured Disturbance Rejection

One factor limiting performance is the chosen control interval of 2 time units. 
The controller can’t respond to the disturbance until it first appears in the 
outputs, i.e., at t = 2. If you wish, experiment with larger and smaller intervals 
(modify the specification on the controller’s Model and Horizons tab).

Effect of Estimator Assumptions
Another factor influencing the response to unmeasured disturbances (and 
model prediction error) is the estimator configuration. The results shown in 
Figure 4-23 are for the default configuration. 

To view the default assumptions, select the controller node (MPC1), and select 
its Estimation tab. The resulting view should be as shown in Figure 4-24. The 
status message (bottom of figure) indicates that the MPC Toolbox default 
assumptions are being used. 
4-33



4 Case-Study Examples

4-3
Figure 4-24:  Default Estimator Assumptions: Output Disturbances.

Now consider the upper part of the figure. The Output Disturbances tab is 
active, and its Signal-by-signal option is selected. According to the tabular 
data, the controller is assuming independent, step-like disturbances (i.e., 
integrated white noise) in the first two outputs.

Select the Input Disturbances tab. Verify that the controller is also assuming 
independent step-like disturbances in the unmeasured disturbance input.

Thus, there are a total of three independent, sustained (step-like) disturbances. 
This allows the controller to eliminate offset in all three measured outputs. 

The disturbance magnitudes are unity by default. Making one larger than the 
rest would signify a more important disturbance at that location.
4



Paper Machine Process Control
Select the Measurement Noise tab. Verify that white noise (unit magnitude) 
is being added to each output. The noise magnitude governs how much 
influence each measurement has on the controller’s decisions. For example, if 
a particular measurement is relatively noisy, the controller will give it less 
weight, relying instead upon the model predictions of that output. This 
provides a noise filtering capability.

In the paper machine application, the default disturbance assumptions are 
reasonable. It is difficult to improve disturbance rejection significantly by 
modifying them.

Controlling the Nonlinear Plant in Simulink
It’s good practice to run initial tests using the linear plant model as described 
in “Servo Response” on page 4-30, and “Unmeasured Input Disturbance” on 
page 4-32. Such tests don’t introduce prediction error, and are a useful 
benchmark for more demanding tests with a nonlinear plant model. The 
controller’s prediction model is linear, so such tests introduce prediction error. 

Figure 4-25:  Paper Machine Headbox Control Using MPC Tools in Simulink

Figure 4-25 is a Simulink diagram in which the MPC Toolbox controller is 
being used to regulate the nonlinear paper machine headbox model. The block 
labeled S-Function embodies the nonlinear model, which is coded in an M-file 
called mpc_pmmodel.m. 
4-35



4 Case-Study Examples

4-3
As shown in the dialog below, the MPC Controller block references a controller 
design called MPC1, which was exported to the MATLAB workspace from the 
design tool. Note also that the measured disturbance inport is enabled, 
allowing the measured disturbance to be connected as shown in Figure 4-25.

Figure 4-26 shows the scope display from the “Outputs” block for the setup of 
Figure 4-25, i.e., an unmeasured disturbance. The yellow curve is H2, the 
magenta is N1, and the cyan is N2. Comparing to Figure 4-23, the results are 
almost identical, indicating that the effects of nonlinearity and prediction error 
were insignificant in this case. Figure 4-27 shows the corresponding 
manipulated variable moves (from the “MVs” scope in Figure 4-25) which are 
smooth yet reasonably fast.

As disturbance size increases, nonlinear effects begin to appear. For a 
disturbance size of 4, the results are still essentially the same as shown in 
Figure 4-26 and Figure 4-27 (scaled by a factor of 4), but for a disturbance size 
of 6, the setpoint deviations are relatively larger, and the curve shapes differ 
(not shown). There are marked qualitative and quantitative differences when 
the disturbance size is 8. When it is 9, deviations become very large, and the 
MVs saturate. If such disturbances were likely, the controller would have to be 
retuned to accommodate them.
6



Paper Machine Process Control
Figure 4-26:  Simulink Test, Output Variables

Figure 4-27:  Simulink Test, Manipulated Variables
4-37



4 Case-Study Examples

4-3
Reference
[1] Ying, Y., M. Rao, and Y. Sun “Bilinear control strategy for paper making 
process,” Chemical Engineering Communications (1992), Vol. 111, pp. 13-28.
8



5

The Design Tool

This chapter is the reference manual for the MPC Toolbox design tool (graphical user interface). For 
example design tool applications, see the MPC Toolbox “Getting Started” manual, or Chapter 4, 
“Case-Study Examples.” in this document. 

Opening the MPC Design Tool (p. 5-2) How to start the design tool from MATLAB or Simulink

The Menu Bar (p. 5-3) Describes the main menu options

The Toolbar (p. 5-6) Describes the toolbar icons and their use

The Tree View (p. 5-7) Explains how to navigate among the various design tool 
views

Importing a Plant Model (p. 5-9) The plant model import dialog and its options

Importing a Controller (p. 5-15) The controller import dialog and its options

Exporting a Controller (p. 5-19) The controller export dialog and its options

Signal Definition View (p. 5-21) Detailed description of the initial design tool view, which 
defines the overall controller structure

Plant Models View (p. 5-26) Lists the plant models available to your design, and 
allows you to import others

Controllers View (p. 5-29) Lists the controllers in your design and allows you to 
copy, export, rename, or delete a controller

Simulation Scenarios List (p. 5-33) Lists the simulation scenarios in your design

Controller Specifications View (p. 5-36) Shows how to specify a controller

Simulation Scenario View (p. 5-58) Shows how to set up a simulation

Response Plots (p. 5-66) Describes the plots generated in a simulation and their 
customization
 



5 The Design Tool

5-2
Opening the MPC Design Tool
To open the Design Tool in MATLAB, type

mpctool

The design tool is part of the Control and Estimation Tools Manager. When 
invoked as shown above, the design tool opens and creates a new project named 
MPCdesign.

If you started the tool previously, the above command makes the tool visible 
but doesn’t create a new project.

Alternatively, if your Simulink model contains an MPC Controller block, you 
can double-click on the block to obtain its mask (see example below) and click 
the Design button. If the MPC controller field is empty, the design tool will 
create a default controller. Otherwise, it will load the named controller object, 
which must be in your workspace, so you can view and modify it.



The Menu Bar
The Menu Bar
The design tool’s menu bar appears whenever you’ve selected an MPC Toolbox 
project or task in the tree (see “The Tree View” on page 5-7). The menu bar’s 
MPC option distinguishes it from other control and estimation tools. See the 
example below. The following sections describe each menu option.

File Menu

New Design
Creates a new (empty) MPC Toolbox design project within the Control and 
Estimation Tools Manager and assigns it a default name. You can also create 
a new design using the toolbar (see “The Toolbar” on page 5-6).

Load
Loads a saved design. A dialog asks you to specify the MAT-file containing the 
saved design. If the MAT-file contains multiple projects, you must select the 
one(s) to be loaded (see example below).

You can also load a design using the toolbar (see “The Toolbar” on page 5-6).
5-3



5 The Design Tool

5-4
Save
Saves a design so you can use it later. The data are saved in a MAT-file. A 
dialog allows you to specify the file name (see below). If you are working on 
multiple projects, you can select those to be saved.

You can also select the Save option using the toolbar (see “The Toolbar” on 
page 5-6.)

Close
Closes the design tool. If you’ve modified the design, you’ll be asked whether or 
not you want to save it before closing.

MPC Menu

Import
You have the following options:

• Plant model – Import a plant model using the model import dialog (see 
“Importing a Plant Model” on page 5-9)

• Controller – Import a controller using the controller import dialog (see 
“Importing a Controller” on page 5-15)



The Menu Bar
Export
Export a controller using the export dialog (see “Exporting a Controller” on 
page 5-19). This option won’t be enabled until your design includes at least one 
fully specified controller.

Simulate
Simulate the current scenario, i.e., the one most recently simulated or selected 
in the tree (see “The Tree View” on page 5-7). You can select this option from 
the keyboard by typing Ctrl-R, or using the toolbar icon (see “The Toolbar” on 
page 5-6).

The Simulate option won’t be unabled until your design includes at least one 
fully specified simulation scenario.
5-5



5 The Design Tool

5-6
The Toolbar
The toolbar, shown below, provides quick access to certain menu options.

For more information on the first four functions, see the following:

• “New Design” on page 5-3

• “Load” on page 5-3

• “Save” on page 5-4

• “Simulate” on page 5-5

The text output area is a text display located along the bottom of the tool that 
displays progress messages and diagnostics. In the above view, the toggle 
button is pushed in, so the text display area appears. If you are working on a 
small screen, you might use the toggle button to hide the text area, allowing 
more room to display the design parameters.

New Design

Load Saved Design Save Current Design

Simulate Current
Scenario

Toggle Text 
Output Area



The Tree View
The Tree View
The tree view appears in a frame on the design tool’s left-hand side (see 
example below). When you select one of the tree’s nodes (by clicking its name 
or icon) the larger frame to its right shows a dialog panel that allows you to 
view and edit the specifications associated with that item.

Node Types

The above example shows two MPC Toolbox design project nodes, Distillation 
Control and CSTR Control, and their sub-nodes. For more details on each 
node type, see the following:

• MPC design project/task – see “Signal Definition View” on page 5-21

• Plant models list – see “Plant Models View” on page 5-26

• Controllers list – see “Controllers View” on page 5-29

• Controller specifications – see “Simulation Scenarios List” on page 5-33

• Scenarios list – see “Simulation Scenario View” on page 5-58

• Scenario specifications – see “Controller Specifications View” on page 5-36

Renaming a Node
You can rename following node types:

• MPC design project/task

MPC project nodes

Plant models list

Controllers list

Controller specifications

Simulation scenarios list
Scenario specifications
5-7



5 The Design Tool

5-8
• Controller specifications

• Scenario specifications

To rename a node, do one of the following:

• Click on the name, wait for an edit box to appear, type the desired name, and 
push the Enter key to finalize your choice, OR

• Right-click on the name, select the Rename menu option, and enter the 
desired name in the dialog box, OR

• To rename a controller specification node, select Controllers and edit the 
controller name in the table, OR

• To rename a scenario specification node, select Scenarios and edit the 
scenario name in the table



Importing a Plant Model
Importing a Plant Model
To import a plant model, do one of the following:

• Select the MPC/Import/Plant Model menu option, OR

• Select the MPC project/task node in the tree (see “The Tree View” on 
page 5-7), and then click the Import Plant button, OR

• Right-click the MPC project/task node and select the Import Plant Model 
menu option, OR

• If you’ve already imported a model, select the Plant models node, and then 
click the Import button, OR

• If you’ve already imported a model, right-click the Plant models node and 
select the Import Model menu option

All of the above open the Plant Model Importer dialog, shown below. Within 
the dialog you can import an LTI model from the workspace or, when you have 
Simulink Control Design, you can import a linearized plant model from the 
Simulink model. The following sections describe the dialog options for 
importing an LTI model from the workspace. For information on importing a 
linearized plant model, see “Importing a Linearized Plant Model” on page 5-12.
5-9



5 The Design Tool

5-1
Import from
Use the radio buttons to set the location from which the model will be imported.

MATLAB Workspace

This is the default option and is the case shown in the above example. The 
Items in your Workspace area in dialog’s upper-right lists all candidate 
models in your MATLAB workspace. Select one by clicking on it. The dialog’s 
Properties area lists the selected model’s properties (the DC model in the above 
example).
0



Importing a Plant Model
MAT-File
The upper part of the dialog changes as shown below.

The MAT-file name edit box becomes active. Type the desired MAT-file name 
here (if it’s not on the MATLAB path, enter the complete file path). You can also 
use the Browse button which activates a standard file chooser dialog.

In the above example, file DCmodels.mat contains two models. Their names 
appear in the Items in your MAT-file area on the dialog’s upper right. As with 
the workspace option, the selected model’s properties appear in the Properties 
area.

Import to
The combo box at the dialog’s bottom allows you to specify the MPC project/task 
into which the plant model will be imported (see example below). It defaults to 
that most recently active.

Buttons

Import
Select the model you want to import from the Items list in the dialog’s upper 
right. Verify that the Import To option designates the correct project/task. 
Click the Import button to import the model.
5-11



5 The Design Tool

5-1
You can select Plant models in the tree to verify that the model has been 
loaded. (See “The Tree View” on page 5-7, and “Plant Models View” on 
page 5-26.)

The import dialog remains visible until you close it, allowing you to import 
additional models.

Close
Click Close to close the dialog window. You can also click the close icon on the 
window’s title bar.

Importing a Linearized Plant Model

1 Open the design tool from within a Simulink model as discussed in Opening 
the MPC Design Tool (p. 5-2).

2 Open the Plant Model Importer dialog (see “Importing a Plant Model” on 
page 5-9).

3 Select the Linearized Plant from Simulink panel (see the following 
example).

Note  If you haven’t opened the design tool from within a Simulink diagram, 
you won’t be able to access the required panel in step 3.
2



Importing a Plant Model
Linearization Process
When you click OK, the design tool uses Simulink Control Design to create a 
linearized plant model. It performs the following tasks automatically:

1 Configure the Control and Estimation Tools Manager.

2 Temporarily insert linearization input and output points in the Simulink 
model at the inputs and outputs of the MPC Controller block.

3 When the Create a new operating condition from MPC I/O values is 
selected, the MPC Toolbox temporarily inserts output constraints at the 
inputs/outputs of the MPC Controller block..

4 Finds a steady state operating condition based on the constraints or uses the 
specified operating condition.

5 Linearizes the plant model about the operating point.

The linearized plant model appears as a new node under Plant Models. For 
details of the linearization process, refer to the Simulink Control Design 
documentation.
5-13



5 The Design Tool

5-1
Linearization Options
You can also customize the linearization process in several ways before clicking 
OK:

• To specify an alternative name for the linearized plant model, enter the 
name in the Linearization model name edit field.

• To use an alternative operating condition, you can

- select one from the menu next to Use the previously computed 
operating condition. This list contains all operating conditions that exist 
within the current project.

- select Create a new operating condition from MPC I/O values to 
compute an operating condition by optimization, using the nominal plant 
values as constraints.

• To replace the nominal plant values with the operating point used in the 
linearization, select the check box next to Replace the MPC nominal I/O 
values with those derived from the operating condition.

• When there are multiple MPC Controller blocks, use the Import to menu to 
select a node within the Control and Estimation Tools Manager to import the 
plant model to.

In addition, the Linearization I/O panel displays the current linearization 
input and output points in the model. When creating the linearized model, the 
MPC Toolbox temporarily modifies these with input and output points suitable 
for extracting a linearized plant model.
4



Importing a Controller
Importing a Controller
To import a controller, do one of the following:

• Select the MPC/Import/Controller menu option, OR

• Select the MPC project/task node in the tree (see “The Tree View” on 
page 5-7), and then click the Import Controller button, OR

• Right-click the MPC project/task node and select the Import Controller 
menu option, OR

• If you’ve already designed a controller, select the Controllers node, and then 
click the Import button, OR

• If you’ve already designed a controller, right-click the Controllers node and 
select the Import Controller menu option

All of the above open the MPC Controller Importer dialog. The following 
sections describe the dialog’s options.
5-15



5 The Design Tool

5-1
Import from
Use the radio buttons to set the location from which the controller will be 
imported.

MATLAB Workspace

This is the default option and is the case shown in the above example. The 
Items in your Workspace area in dialog’s upper-right lists all mpc objects in 
your workspace. Select one by clicking on it. The Properties area lists the 
properties of the selected model.
6



Importing a Controller
MAT-File
The upper part of the dialog changes as shown below.

The MAT-file name edit box becomes active. Type the desired MAT-file name 
here (if it’s not on the MATLAB path, enter the complete file path). You can also 
use the Browse button which activates a standard file chooser dialog.

In the above example, file Controllers.mat contains two mpc objects. Their 
names appear in the Items in your MAT-file area on the dialog’s upper right.

Import to
This allows you to specify the MPC task into which the controller will be 
imported (see example below). It defaults to that most recently active.

Buttons

Import
Select the controller you want to import from the Items list in the dialog’s 
upper right. Verify that the Import To option designates the correct 
project/task. Click the Import button to import the controller.

The new controller should appear in the tree as a sub-node of Controllers. (See 
“The Tree View” on page 5-7.)

The imported controller contains a plant model, which appears in the Plant 
models list. (See “Plant Models View” on page 5-26.)
5-17



5 The Design Tool

5-1
Note  If the selected controller is incompatible with any others in the 
designated project, the design tool will not import it.

Close
Click Close to close the dialog window. You can also click the close icon on the 
window’s title bar.
8



Exporting a Controller
Exporting a Controller
To export a controller, do one of the following:

• Select the MPC/Export menu option, OR

• Select Controllers in the tree and click its Export button, OR

• In the tree, right-click Controllers and select the Export Controller menu 
option, OR

• In the tree, right-click the controller you wish to export and select the Export 
Controller menu option

All of the above open the MPC Controller Exporter dialog (see example below).

Dialog Options
The following sections describe the dialog’s options.

Controller Source
Use this to select the project/task containing the controller to be exported. It 
defaults to the project/task most recently active.

Controller to Export
Use this to specify the controller to be exported. It defaults to the controller 
most recently selected in the tree.
5-19



5 The Design Tool

5-2
Name to Assign
Use this to assign a valid MATLAB variable name (no spaces). It defaults to the 
selected controller’s name (with spaces removed, if any).

Export to Workspace
Select this radio button if you want the controller to be exported to the 
MATLAB workspace.

Export to MAT-file
Select this radio button if you want the controller to be exported to a MAT-file.

Buttons

Export
If you’ve selected the to Workspace option, clicking Export causes a new mpc 
object to be created in your MATLAB workspace. (If one having the assigned 
name already exists, you’ll be asked if you want to overwrite it.) You can use 
the MATLAB whos command to verify that the controller has been exported.

If you’ve selected the to MAT-file option, clicking Export opens a standard file 
chooser that allows you to specify the file.

In either case, the dialog window remains visible, allowing you to export 
additional controllers.

Close
Click Close to close the dialog window. You can also click the close icon on the 
window’s title bar.
0



Signal Definition View
Signal Definition View
The signal definition view appears whenever you select an MPC Toolbox 
project/task node in the tree (see “The Tree View” on page 5-7). It is also the 
view you’ll see when you open the design tool for the first time. An example 
appears below.

The following sections describe the view’s main features.

MPC Structure Overview
This upper section is a non-editable display of your application’s structure. 
Once you’ve imported a plant model (or controller), the graphic shows counts 
for the five possible signal types, as in the example below.
5-21



5 The Design Tool

5-2
The counts will change if you edit the signal types.

Buttons

Import Plant
Clicking this opens the Plant Model Importer dialog (see “Importing a Plant 
Model” on page 5-9).

Import Controller
Clicking this opens the MPC Controller Importer dialog (see “Importing a 
Controller” on page 5-15).

Note  You won’t be allowed to proceed with your design until you import a 
plant model. You can do so indirectly by importing a controller or loading a 
saved project.

Signal Properties Tables
Two tables display the properties of each signal in your design.

Input Signal Properties
The plant’s input signals appear as table rows (see example below).
2



Signal Definition View
The table’s columns are editable and have the following significance:

• Name – The signal name, an alphanumeric string used to label other tables, 
graphics, etc. Each name must be unique. The design tool assigns a default 
name if your imported plant model doesn’t specify one.

• Type – One of the three valid MPC Toolbox input signal types. The above 
example shows one of each. To change a signal’s type, click on the table cell 
and select the desired type from the resulting menu. The valid signal types 
are as follows:

Manipulated – A signal that will be manipulated by the controller, i.e., an 
actuator (valve, motor, etc.)

Measured Disturbance – An independent input whose value is measured 
and used as a controller input for feedforward compensation

Unmeasured Disturbance – An independent input representing an 
unknown, unexpected disturbance.

• Description – An optional descriptive string.

• Units – Optional units (dimensions), a string. Used to label other dialogs, 
simulation plots, etc.

• Nominal – The signal’s nominal value. The design tool defaults this to zero. 
Any value you assign here will be the default initial condition in simulations.

Note  Your design must include at least one manipulated variable. The other 
input signal types need not be included.

Output Signal Properties
The plant’s output signals appear as table rows (see example below).
5-23



5 The Design Tool

5-2
The table’s columns are editable and have the following significance:

• Name – The signal name, an alphanumeric string used to label other tables, 
graphics, etc. Each name must be unique. The design tool assigns a default 
name if your imported plant model doesn’t specify one.

• Type – One of the two valid MPC Toolbox output signal types. The above 
example shows one of each. To change a signal’s type, click on the table cell 
and select the desired type from the resulting menu. The valid signal types 
are as follows:

Measured – A signal the controller can use for feedback

Unmeasured – Predicted by the plant model but unmeasured. Can be used 
as an indicator. Can also be assigned a setpoint or constrained.

• Description – An optional descriptive string.

• Units – Optional units (dimensions), a string. Used to label other dialogs, 
simulation plots, etc.

• Nominal – The signal’s nominal value. The design tool defaults this to zero. 
Any value you assign here will be the default initial condition in simulations.

Note  Your design must include at least one measured output. Inclusion of 
unmeasured outputs is optional.

Right-Click Menu Options
Right-clicking on an MPC project/task node allows you to choose one of the 
following menu items:

• Import Plant Model – Opens the Plant Model Importer dialog (see 
“Importing a Plant Model” on page 5-9)
4



Signal Definition View
• Import Controller – Opens the MPC Controller Importer dialog (see 
“Importing a Controller” on page 5-15)

• Clear Project – Erases all plant models, controllers, and scenarios in your 
design, returning the project to its initial empty state.

• Delete Project – Deletes the selected project node.
5-25



5 The Design Tool

5-2
Plant Models View
Selecting Plant models in the tree causes this view to appear (see example 
below).

The following sections describe the view’s main features.
6



Plant Models View
Plant Models List
This table lists all the plant models you’ve imported and/or plant models 
contained in controllers that you’ve imported. The example below lists two 
imported models, DC and DCp.

The Name field is editable. Each model must have a unique name. The name 
you assign here will be used within the design tool, but will not alter the 
original model’s name.

The Type field is noneditable and indicates the model’s LTI object type (see the 
Control System Toolbox documentation for a detailed discussion of LTI 
models).

The Sampling Period field is zero for continuous-time models, and a positive 
real value for discrete-time models.

The Imported on field gives the date and time the model was imported into the 
design tool.

Model Details
This scrollable viewport shows details of the model currently selected in the 
plant models list (see “Plant Models List” on page 5-27). An example appears 
below.
5-27



5 The Design Tool

5-2
Additional Notes
You can use this editable text area to enter comments, distinguishing model 
features, etc.

Buttons

Import
Opens the Plant Model Importer dialog (see “Importing a Plant Model” on 
page 5-9).

Delete
Deletes the selected model. If the model is being used elsewhere (i.e., in a 
controller or scenario), the first model in the list replaces it (and a warning 
message appears).

Right-Click Options
Right-clicking on the Plant models node causes the following menu option to 
appear.

Import Model
Opens the Plant Model Importer dialog (see “Importing a Plant Model” on 
page 5-9).
8



Controllers View
Controllers View
Selecting Controllers in the tree causes this view to appear (see example 
below).

The following sections describe the view’s main features.
5-29



5 The Design Tool

5-3
Controllers List
This table lists all the controllers in your project. The example below lists two 
controllers, MPC1 and MPC2.

The Name field is editable. The name you assign here must be unique. You will 
refer to it elsewhere in the design tool, e.g., when you use the controller in a 
simulation scenario. Each listed controller corresponds to a subnode of 
Controllers (see “The Tree View” on page 5-7). Editing the name in the table 
will rename the corresponding subnode.

The Plant Model field is editable. To change the selection, click on the cell and 
choose one of your models from the list. (All models appearing in the Plant 
Models View are valid choices. See “Plant Models View” on page 5-26.)

The Control Interval field is editable and must be a positive real number. You 
can also set it in the Controller Specifications view (see “Model and Horizons 
Tab” on page 5-36 for more details).

The Prediction Horizon field is editable and must be a positive, finite integer. 
You can also set in the Controller Specifications view (see “Model and Horizons 
Tab” on page 5-36 for more details).

The noneditable Last Update field gives the date and time the controller was 
most recently modified.
0



Controllers View
Controller Details
This scrollable viewport shows details of the controller currently selected in the 
controllers list (see “Controllers List” on page 5-30). An example appears 
below.

Note  This view shows controller details once you have used the controller in 
a simulation. Prior to that, it is empty. If necessary, you can use the Display 
button to force the details to appear.

Additional Notes
You can use this editable text area to enter comments, distinguishing 
controller features, etc.

Buttons

Import
Opens the MPC Controller Importer dialog (see “Importing a Controller” on 
page 5-15).

Export
Opens the MPC Controller Exporter dialog (see “Exporting a Controller” on 
page 5-19).

New
Creates a new controller specification subnode containing the default MPC 
Toolbox settings, and assigns it a default name.
5-31



5 The Design Tool

5-3
Copy
Copies the selected controller, creating a controller specification subnode 
containing the same controller settings, and assigning it a default name.

Display
Calculates and displays details for the selected controller.

Delete
Deletes the selected controller. If the controller is being used elsewhere (i.e., in 
a simulation scenario), the first controller in the list replaces it (and a warning 
message appears).

Right-Click Options
Right-clicking on the Controllers node causes the following menu options to 
appear.

New Controller
Creates a new controller specification subnode containing the default MPC 
Toolbox settings, and assigns it a default name.

Import Controller
Opens the MPC Controller Importer dialog (see “Importing a Controller” on 
page 5-15).

Export Controller
Opens the MPC Controller Exporter dialog (see “Exporting a Controller” on 
page 5-19).
2



Simulation Scenarios List
Simulation Scenarios List
Selecting Scenarios in the tree causes this view to appear (see example below).

The following sections describe the view’s main features.
5-33



5 The Design Tool

5-3
Scenarios List
This table lists all the scenarios in your project. The example below lists two, 
Scenario1 and Scenario2.

The Name field is editable. The assigned name must be unique. Each listed 
scenario corresponds to a subnode of Scenarios (see “The Tree View” on 
page 5-7). Editing the name in the table will rename the corresponding 
subnode.

The Controller field is editable. To change the selection, click on the cell and 
choose one of your controllers from the list. (All controllers appearing in the 
Controllers View are valid choices. See “Controllers View” on page 5-29). You 
can also set this using the Scenario Specifications view (for more discussion, 
see “Simulation Scenario View” on page 5-58).

The Plant field is editable. To change the selection, click on the cell and choose 
one of your plant models from the list. (All models appearing in the Plant 
Models View are valid choices. See “Plant Models View” on page 5-26). You can 
also set this in the scenario specifications (for more discussion, see “Simulation 
Scenario View” on page 5-58).

The Closed Loop field is an editable checkbox. If unchecked, the simulation 
will be open loop. You can also set it in the scenario specifications (for more 
discussion see “Simulation Scenario View” on page 5-58).

The Constrained field is an editable checkbox. If unchecked, the simulation 
will ignore all constraints specified in the controller design. You can also set it 
in the scenario specifications (for more discussion see “Simulation Scenario 
View” on page 5-58).
4



Simulation Scenarios List
The Duration field is editable and must be a positive, finite real number. It 
sets the simulation duration. You can also set it in the scenario specifications 
(for more discussion see “Simulation Scenario View” on page 5-58).

Scenario Details
This area is blank at all times.

Additional Notes
You can use this editable text area to enter comments, distinguishing scenario 
features, etc.

Buttons

New
Creates a new scenario specification subnode containing the default MPC 
Toolbox settings, and assigns it a default name.

Copy
Copies the selected scenario, creating a scenario specification subnode 
containing the same settings, and assigning it a default name.

Delete
Deletes the selected scenario.

Right-Click Options
Right-clicking on the Scenarios node causes the following menu option to 
appear

New Scenario
Creates a new scenario specification subnode containing the default MPC 
Toolbox settings, and assigns it a default name.
5-35



5 The Design Tool

5-3
Controller Specifications View
This view appears whenever you select one of your controller specification 
nodes (see “The Tree View” on page 5-7). It allows you to specify or review 
controller settings. It consists of four tabs, each devoted to a particular design 
aspect. All settings have default values, but these might not be best for your 
application.

Model and Horizons Tab

Plant Model
6



Controller Specifications View
This combo box allows you to specify the plant model the controller uses for its 
predictions. You can choose any of the plant models you’ve imported. (See 
“Importing a Plant Model” on page 5-9.)

Horizons

The Control interval sets the elapsed time between successive controller 
moves. It must be a positive, finite real number. The calculations assume a 
zero-order hold on the manipulated variables (the signals adjusted by the 
controller). Thus, these signals are constant between moves.

The Prediction horizon sets the number of control intervals over which the 
controller predicts its outputs when computing controller moves. It must be a 
positive, finite integer.

The Control horizon sets the number of moves computed. It must be a 
positive, finite integer, and must not exceed the prediction horizon. If less than 
the prediction horizon, the final computed move fills the remainder of the 
prediction horizon.

For more discussion, see “A Typical Sampling Instant” on page 1-5, and 
“Prediction and Control Horizons” on page 1-8.

Blocking
5-37



5 The Design Tool

5-3
By default, the Blocking option is unchecked (off). When on as shown above, 
the design tool replaces the Control horizon specification (see “Horizons” on 
page 5-37) with a move pattern determined by the following settings:

• Blocking allocation within prediction horizon – choices are

Beginning – successive moves at the beginning of the prediction horizon, 
each with a duration of one control interval

Uniform – the prediction horizon is divided by the number of moves and 
rounded to obtain an integer duration, and each computed move has this 
duration (the last move extends to fill the prediction horizon)

End – successive moves at the end of the prediction horizon, each with a 
duration of one control interval

Custom – you specify the duration of each computed move

• Number of moves computed per step – the number of moves computed 
when the allocation setting is Beginning, Uniform, or End. Must be a 
positive integer not exceeding the prediction horizon.

• Custom move allocation vector – the duration of each computed move, 
specified as a row vector. In the example below, there are 4 moves, the first 
lasting 1 control interval, the next two lasting 3, and the final lasting 8 for a 
total of 15. The Number of moves computed per step setting is disabled 
(ignored).

The sum of the vector elements should equal the prediction horizon (15 in 
this case). If not, the last move is extended or truncated automatically.

Note  When Blocking is off, the controller uses the Beginning allocation 
with Number of moves computed per step equal to the Control horizon.

For more discussion, see “Blocking” on page 1-14.
8



Controller Specifications View
Constraints Tab
This panel allows you to specify constraints (bounds) on manipulated variables 
and outputs. Constraints can be hard or soft. By default, all variables are 
unconstrained, as shown in the view below. 

Note  If you specify constraints, manipulated variable constraints are hard 
by default, whereas output variable constraints are soft by default. You can 
customize this behavior, as discussed in the following sections. For additional 
information on constraints, see “Optimization and Constraints” on page 1-10, 
and “Optimization Problem” on page 2-5.
5-39



5 The Design Tool

5-4
Constraints on Manipulated Variables
The example below is for an application with two manipulated variables (MVs), 
each represented by a table row.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The remaining table columns are editable. If you leave a cell blank, the 
controller ignores that constraint. You can achieve the same effect by entering 
-Inf (for a Minimum or Max down rate) or Inf (for a Maximum or Max up 
rate).

The Minimum and Maximum values set each MV’s range. 

The Max down rate and Max up rate values set the amount the MV can 
change in a single control interval. The Max down rate must be negative or 
zero. The Max up rate must be positive or zero.

Constraint values must be consistent with your nominal values (see “Input 
Signal Properties” on page 5-22). In other words, each MV’s nominal value 
must satisfy the constraints.

Constraint values must also be self-consistent. For example, an MV’s lower 
bound must not exceed its upper bound.
0



Controller Specifications View
Constraints on Output Variables
The example below is for an application with two output variables, each 
represented by a table row.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The remaining table columns are editable. If you leave a cell blank (as above), 
the controller ignores that constraint. You can achieve the same effect by 
entering -Inf (for a Minimum) or Inf (for a Maximum).

Constraint values must be consistent with your nominal values (see “Output 
Signal Properties” on page 5-23). In other words, each output’s nominal value 
must satisfy the constraints.

Constraint values must also be self-consistent. For example, an output’s lower 
bound must not exceed its upper bound.

Note  Don’t constrain outputs unless this is an essential aspect of your 
application. It is usually better to define output setpoints (reference values) 
rather than constraints.

Constraint Softening
A hard constraint cannot be violated. Hard constraints are risky, especially for 
outputs, because the controller will ignore its other objectives in order to satisfy 
5-41



5 The Design Tool

5-4
them. Also, the constraints might be impossible to satisfy in certain situations, 
in which case the controllers calculations are mathematically infeasible.

The MPC Toolbox allows you to specify soft constraints. These can be violated, 
but you specify a violation tolerance for each constraint (the relaxation band). 
See the example specifications below.

To open this dialog, click the Constraint softening button at the bottom of the 
Contraints tab in the controller specification view (see “Constraints Tab” on 
page 5-39).

Input Constraints
An example input constraint softening specification appears below.
2



Controller Specifications View
The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The Minimum, Maximum, Max down rate, and Max up rate columns are 
editable. Their values are the same as on the main Constraints tab (see 
“Constraints on Manipulated Variables” on page 5-40). You can specify them in 
either location.

The remaining columns specify the relaxation band for each constraint. An 
empty cell is equivalent to a zero, i.e., a hard constraint. 

Entries must be zero or positive real numbers. To soften a constraint, increase 
its relaxation band.

The example above shows a relaxation band of 2 moles/min for the steam flow 
rate’s lower and upper bounds. The lack of a relaxation band setting for the 
reflux flow rate’s constraints means that these will be hard.

Note  The relaxation band is a relative tolerance, not a strict bound. In other 
words, the actual constraint violation can exceed the relaxation band.
5-43



5 The Design Tool

5-4
Output Constraints
An example output constraint specification appears below.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The Minimum and Maximum columns are editable. Their values are the same 
as on the main Constraints tab (see “Constraints on Output Variables” on 
page 5-41). You can specify them in either location.

The remaining columns specify the relaxation band for each constraint. An 
empty cell is equivalent to 1.0, i.e., a soft constraint. 

Entries must be zero or positive real numbers. To soften a constraint, increase 
its relaxation band.

The example above shows a relaxation band of 0.5 Mole % for the distillate 
purity lower bound, and a relaxation band of 2 Mole % for the bottoms purity 
lower bound (the softer of the two constraints).

Note  The relaxation band is a relative tolerance, not a strict bound. In other 
words, the actual constraint violation can exceed the relaxation band.
4



Controller Specifications View
Overall Constraint Softness
The relaxation band settings allow you to adjust the hardness/softness of each 
constraint. You can also soften/harden all constraints simultaneously using the 
slider at the bottom of the dialog panel.

You can move the slider or edit the value in the edit box, which must be 
between 0 and 1.

Buttons
OK – Closes the constraint softening dialog, implementing changes to the 
tabular entries or the slider setting.

Cancel – Closes the constraint softening dialog without changing anything.
5-45



5 The Design Tool

5-4
Weight Tuning Tab
The example below shows the MPC Toolbox default tuning weights for an 
application with two manipulated variables and two outputs.

The following sections discuss the three panel areas in more detail. For 
additional information, see “Optimization Problem” on page 2-5.
6



Controller Specifications View
Input Weights

The Name, Description, and Units columns are noneditable. To change them, 
use the signal definition view. (See “Signal Definition View” on page 5-21. Any 
changes there apply to the entire design.)

The Weight column sets a penalty on deviations of each manipulated variable 
(MV) from its nominal value. The weight must be zero or a positive real 
number. The default is zero, meaning that the corresponding MV can vary 
freely provided that it satisfies its constraints (see “Constraints on 
Manipulated Variables” on page 5-40). 

A large Weight discourages the corresponding MV from moving away from its 
nominal value. This can cause steady state error (offset) in the output variables 
unless you have extra MVs at your disposal.

Note  To set the nominal values, use the signal definition view. (See “Signal 
Definition View” on page 5-21. Any changes there apply to the entire design.)

The Rate Weight value sets a penalty on MV changes, i.e., on the magnitude 
of each MV move. Increasing the penalty on a particular MV causes the 
controller to change it more slowly. The table entries must be zero or positive 
real numbers. These values have no effect in steady state.
5-47



5 The Design Tool

5-4
Output Weights

The Name, Description, and Units columns are noneditable. To change them, 
use the signal definition view. (See “Signal Definition View” on page 5-21. Any 
changes there apply to the entire design.)

The Weight column sets a penalty on deviations of each output variable from 
its setpoint (or reference) value. The weight must be zero or a positive real 
number. 

A large Weight discourages the corresponding output from moving away from 
its setpoint. 

If you don’t need to hold a particular output at a setpoint, set its Weight to zero. 
This may be the case, for example, when an output doesn’t have a target value 
and is being used as an indicator variable only.

Overall (Slider Control)

The slider adjusts the weights on all variables simultaneously. Moving the 
slider to the left increases rate penalties relative to setpoint penalties, which 
often (but not always!) increases controller robustness. The disadvantage is 
that disturbance rejection and setpoint tracking become more sluggish.

You can also change the value in the edit box. It must be a real number between 
0 and 1. The actual effect is nonlinear. You will generally need to run trials to 
determine the best setting.
8



Controller Specifications View
Estimation Tab
Use these specifications to shape the controller’s response to unmeasured 
disturbances and measurement noise. 

The example below shows the MPC Toolbox default settings for an application 
with two output variables and no unmeasured disturbance inputs.

The following sections cover each estimation feature in detail. For additional 
information, see “State Estimation” on page 1-13, and “State Estimation” on 
page 2-8.

Button (MPC Default Settings)
If you edit any of the Estimation tab settings, the display near the top will 
appear as follows.
5-49



5 The Design Tool

5-5
To return the settings to the default state, click the Use MPC defaults button, 
causing the display to revert to the default condition shown below.

Overall Estimator Gain

This slider determines the controller’s overall disturbance response. As you 
move the slider to the left, the controller responds less aggressively to 
unexpected changes in the outputs, i.e., it assumes that such changes are more 
likely to be caused by measurement noise rather than a real disturbance.

You can also change the value in the edit box. It must be between zero and 1. 
The effect is nonlinear, and you might need to run trial simulations to achieve 
the desired result.
0



Controller Specifications View
Output Disturbances
Use these settings to model unmeasured disturbances adding to the plant 
outputs. 

The example below shows the tab’s appearance with the Signal-by-signal 
option selected for an application having two plant outputs.

The graphic shows the disturbance location. 

Use the table to specify the disturbance character for each output.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The Type column sets the disturbance character. To edit this, click the cell and 
select from the resulting menu. You have the following options:

• Steps – simulates random step-like disturbances (integrated white noise)

• Ramps – simulates a random drifting disturbance (doubly-integrated white 
noise)

• White – white noise
5-51



5 The Design Tool

5-5
The Magnitude column specifies the standard deviation of the white noise 
assumed to create the disturbance. Set it to zero if you want to turn off a 
particular disturbance. 

For example, if Type is Steps and Magnitude is 2, the disturbance model is 
integrated white noise, where the white noise has a standard deviation of 2.

If these options are too restrictive, select the LTI model in Workspace option. 
The tab appearance changes to the view shown below.

You must specify an LTI output disturbance model residing in your workspace. 
The Browse button opens a dialog listing all LTI models in your workspace, 
and allows you to choose one. You can also type the model name in the edit box, 
as shown above.

The model must have the same number of outputs as the plant.

The white noise entering the model is assumed to have unity standard 
deviation.
2



Controller Specifications View
Input Disturbances
Use these settings to model disturbances affecting the plant’s unmeasured 
disturbance inputs.

Note  This option is available only if your plant model includes unmeasured 
disturbance inputs.

The example below shows the tab’s appearance with the Signal-by-signal 
option selected for a plant having one unmeasured disturbance input. The 
graphic shows the disturbance location.

Use the table to specify the character of each unmeasured disturbance input.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The Type column sets the disturbance character. To edit this, click the cell and 
select from the resulting menu. You have the following options:
5-53



5 The Design Tool

5-5
• Steps – simulates random step-like disturbances (integrated white noise)

• Ramps – simulates a random drifting disturbance (doubly-integrated white 
noise)

• White – white noise

The Magnitude column specifies the standard deviation of the white noise 
assumed to create the disturbance. Set it to zero if you want to turn off a 
particular disturbance. 

For example, if Type is Steps and Magnitude is 2, the disturbance model is 
integrated white noise, where the white noise has a standard deviation of 2.

If the above options are too restrictive, select the LTI model in Workspace 
option. The tab appearance changes to the view shown below.

You must specify an LTI disturbance model residing in your workspace. The 
Browse button opens a dialog listing all LTI models in your workspace, and 
allows you to choose one. You can also type the model name in the edit box, as 
shown above.

The number of model outputs must equal the number of plant unmeasured 
disturbance inputs. The white noise entering the model is assumed to have 
unity standard deviation. 
4



Controller Specifications View
Noise
Use these settings to model noise in the plant’s measured outputs. 

The example below shows the tab’s appearance with the Signal-by-signal 
option selected for a plant having two measured outputs. The graphic shows 
the noise location.

Use the table to specify the character of each noise input.

The Name and Units columns are noneditable. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes there 
apply to the entire design.)

The Type column sets the noise character. To edit this, click the cell and select 
from the resulting menu. You have the following options:

• White – white noise

• Steps – simulates random step-like disturbances (integrated white noise)

The Magnitude column specifies the standard deviation of the white noise 
assumed to create the noise. Set it to zero if you want to specify that an output 
is noise-free. 
5-55



5 The Design Tool

5-5
For example, if Type is Steps and Magnitude is 2, the noise model is 
integrated white noise, where the white noise has a standard deviation of 2.

If the above options are too restrictive, select the LTI model in Workspace 
option. The tab appearance changes as follows.

You must specify an LTI model residing in your workspace. The Browse button 
opens a dialog listing all LTI models in your workspace, and allows you to 
choose one. You can also type the model name in the edit box, as shown above.

The number of noise model outputs must equal the number of plant measured 
outputs.

The white noise entering the model is assumed to have unity standard 
deviation.

Right-Click Menus

Copy Controller
Creates a new controller having the same settings and a default name.
6



Controller Specifications View
Delete Controller
Deletes the controller. If the controller is being used in a simulation scenario, 
the design tool replaces it with the first controller in your list, and displays a 
warning message.

Rename Controller
Opens a dialog allowing you to rename the controller.

Note  Each controller in a design project/task must have a unique name.

Export Controller
Opens the MPC Controller Exporter dialog (see “Exporting a Controller” on 
page 5-19).
5-57



5 The Design Tool

5-5
Simulation Scenario View
This view appears whenever you select one of your scenario specification nodes 
(see “The Tree View” on page 5-7). It allows you to specify simulation settings 
and independent variables. All have default values, but you will want to 
change at least some of them (otherwise all independent variables will be 
constant). Defaults for a plant with three inputs and two outputs appears 
below.

The middle table won’t appear unless you have designated at least one input 
signal to be a measured disturbance.

The following sections describe each of the dialog panel’s features.
8



Simulation Scenario View
Simulation Settings

Use this section to set the following:

• Controller – select one of your controllers

• Plant – select the plant model that will act as the “real” plant in the 
simulation, i.e., it need not be the same as that used for controller 
predictions.

• Duration – the simulation duration in time units

• Close loops – if unchecked, the simulation will be open-loop

• Enforce Constraints – if unchecked, all controller constraints will be 
ignored

The Control interval field is display-only, and reflects the setting in your 
Controller selection. You can change it there if necessary (see “Model and 
Horizons Tab” on page 5-36).

Setpoints

Note  Setpoint specifications affect closed-loop simulations only.

Use this table to specify the setpoint for each output. In the example below, 
which is for an application having two plant outputs, the first would be 
constant at 0.0, and the second would change step-wise.
5-59



5 The Design Tool

5-6
The Name and Units columns are display-only. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes apply 
to the entire design.)

The Type column specifies the setpoint variation. To change this, click on the 
cell and select a choice from the resulting menu.

The significance of the Initial value, Size, Time, and Period columns depends 
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you’ve 
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-63.

If the Look ahead option is checked (i.e., on), the controller will use future 
values of the setpoints in its calculations. This improves setpoint tracking, but 
knowledge of future setpoint changes is unusual in practice.

Note  In the current implementation, checking or unchecking the Look 
ahead option for one output will set the others to the same state. The MPC 
Toolbox code does not allow you to Look ahead for some outputs but not for 
others.

Measured Disturbances
Use this table to specify the variation of each measured disturbance. In the 
example below, which is for an application having a single measured 
disturbance, the “Steam Rate” input would be constant at 0.0.

The Name and Units columns are display-only. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes apply 
to the entire design.)

The Type column specifies the disturbance variation. To change this, click on 
the cell and select a choice from the resulting menu.
0



Simulation Scenario View
The significance of the Initial value, Size, Time, and Period columns depends 
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you’ve 
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-63.

If the Look ahead option is checked (i.e., on), the controller will use future 
values of the measured disturbance(s) in its calculations. This improves 
disturbance rejection, but knowledge of future disturbances is unusual in 
practice. It has no effect in an open-loop simulation.

Note  In the current implementation, checking or unchecking the Look 
ahead option for one input will set the others to the same state. The MPC 
Toolbox code does not allow you to Look ahead for some inputs but not for 
others.

Unmeasured Disturbances
Use this table to specify the variation of each measured unmeasured 
disturbance. In the example below, all would be constant at 0.0.

Unmeasured Disturbance Locations
You can simulate an unmeasured disturbance in any of the following locations:

• The plant’s unmeasured disturbance (UD) inputs (if any) 

• The plant’s measured outputs (MO)

• The plant’s manipulated variable (MV) inputs

All of the above will appear as rows in the table. In the case of a measured 
output or manipulated variable, the disturbance is an additive bias.
5-61



5 The Design Tool

5-6
The Name and Units columns are display-only. To change them, use the signal 
definition view. (See “Signal Definition View” on page 5-21. Any changes apply 
to the entire design.)

The Type column specifies the disturbance variation. To change this, click on 
the cell and select a choice from the resulting menu.

The significance of the Initial value, Size, Time, and Period columns depends 
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you’ve 
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-63.

Open-Loop Simulations
For open-loop simulations, you can vary the MV unmeasured disturbance to 
simulate the plant’s response to a particular MV. The MV signal coming from 
the controller stays at its nominal value, and the MV unmeasured disturbance 
adds to it.

For example, suppose Reflux Rate is an MV, and the corresponding row in the 
table below represents an unmeasured disturbance in this MV.

You could set it to a constant value of 1 to simulate the plant’s open-loop 
unit-step response to the Reflux Rate input. (In a closed-loop simulation, 
controller adjustments would also contribute, changing the response.)

Similarly, an unmeasured disturbance in an MO adds to the output signal 
coming from the plant. If there are no changes at the plant input, the plant 
outputs are constant, and you see only the change due to the disturbance. This 
allows you to check the disturbance character before running a closed-loop 
simulation.
2



Simulation Scenario View
Signal Type Settings
The table below is an example that uses five of the six available signal types 
(the Constant option has been illustrated above). The cells with white 
backgrounds are the entries you must supply. All have defaults.

Constant
The signal will be held at the specified Initial value for the entire simulation.

 for 

Step
Prior to Time, the signal = Initial value. At Time, the signal changes step-wise 
by Size units. Its value thereafter = Initial value + Size.

 for  where y0 = Initial value, t0 = Time

 for  where M = Size

Ramp
Prior to Time, the signal = Initial value. At Time, the signal begins to vary 
linearly with slope Size.

 for  where y0 = Initial value, t0 = Time

 for  where M = Size

Sine
Prior to Time, the signal = Initial value. At Time, the signal begins to vary 
sinusoidally with amplitude Size and period Period.

 for  where y0 = Initial value, t0 = Time

y y0= t 0≥

y y0= 0 t t0<≤

y y0 M+= t t0≥

y y0= 0 t t0<≤

y y0 M t t0–( )+= t t0≥

y y0= 0 t t0<≤
5-63



5 The Design Tool

5-6
 for  where M = Size, /Period

Pulse
Prior to Time, the signal = Initial value. At Time, a square pulse of duration 
Period and magnitude Size occurs.

 for  where y0 = Initial value, t0 = Time

 for  where M = Size, T = Period

 for  

Gaussian
Prior to Time, the signal = Initial value. At Time, the signal begins to vary 
randomly about Initial value with standard deviation Size.

 for  where y0 = Initial value, t0 = Time

 for  where M = Size 

randn is MATLAB’s random-normal function, which generates random 
numbers having zero mean and unit variance.

Simulation Button
Click the Simulate button to simulate the scenario. You can also type ctrl-R, 
use the toolbar icon (see “The Toolbar” on page 5-6), or use the MPC/Simulate 
menu option (see “The Menu Bar” on page 5-3).

Right-Click Menus

Copy Scenario
Creates a new simulation scenario having the same settings and a default 
name.

Delete Scenario
Deletes the scenario.

y y0 M ω t t0–( )[ ]sin+= t t0≥ ω 2π=

y y0= 0 t t0<≤

y y0 M+= t0 t t0 T+<≤

y y0= t t0 T+≥

y y0= 0 t t0<≤

y y0 Mrandn+= t t0≥
4



Simulation Scenario View
Rename Scenario
Opens a dialog allowing you to rename the scenario. 

Note  Each scenario in a design project/task must have a unique name.
5-65



5 The Design Tool

5-6
Response Plots
Each time you simulate a scenario, the design tool plots the corresponding 
plant input and output responses. The graphic below shows such a response 
plot for a plant having two outputs (the corresponding input response plot is 
not shown).

By default, each plant signal plots in its own graph area (as shown above). If 
the simulation is closed loop, each output signal plot include the corresponding 
setpoint.

The following sections describe response plot customization options.

Data Markers
You can use data markers to label a curve or to display numerical details. 

Adding a Data Marker
To add a data marker, click on the desired curve at the location you want to 
mark. The following graph shows a marker added to each output response and 
its corresponding setpoint.
6



Response Plots
Data Marker Contents
Each data marker provides information about the selected point, as follows:

• Response – the scenario that generated the curve

• Time – the time value at the data marker location

• Amplitude – the signal value at the data marker location

• Output – the plant variable name (plant outputs only)

• Input – variable name for plant inputs and setpoints

Changing a Data Marker’s Alignment
To relocate the data marker’s label (without moving the marker), right-click on 
the marker, and select one of the four Alignment menu options. The above 
example shows three of the possible four alignment options.

Relocating a Data Marker
To move a marker, left-click on it (holding down the mouse key) and drag it 
along its curve to the desired location.

Deleting Data Markers
To delete all data markers in a plot, click in the plot’s white space.
5-67



5 The Design Tool

5-6
To delete a single data marker, right-click on it and select the Delete option.

Right-Click Options
Right-click on a data marker to use one of the following options:

• Alignment – relocate the marker’s label

• Font Size – change the label’s font size

• Movable – on/off option that makes the marker movable or fixed

• Delete – deletes the selected marker

• Interpolation – Interplolate linearly between the curve’s data points, or 
locate at the nearest data point

• Track Mode – Changes the way the marker responds when you drag it

Displaying Multiple Scenarios
By default the response plots include all the scenarios you’ve simulated. The 
example below shows a response plot for a plant with two outputs. The data 
markers indicate the two scenarios being plotted: “Accurate Model” and 
“Perturbed Model”. Both scenarios use the same setpoints (not marked – the 
lighter solid lines).

Viewing Selected Scenarios
If your plots are too cluttered, you can hide selected scenarios. To do so,

• Right-click in the plot’s white space

• Choose Responses from the resulting context menu

• Toggle a response on or off using the submenu

Note  This selection affects all variables being plotted.
8



Response Plots
Revising a Scenario
If you modify and recalculate a scenario, its data are replotted, replacing the 
original curves.

Viewing Selected Variables
By default, the design tool plots all plant inputs in a single window, and plots 
all plant outputs in another. If your application involves many signals, the 
plots of each may be too small to view comfortably. 

Therefore, you can control the variables being plotted. To do so, right-click in a 
plot’s white space and choose Channel Selector from the resulting menu. A 
dialog box appears, on which you can opt to show or hide each variable.

Grouping Variables in a Single Plot
By default, each variable appears in its own plot area. You can instead choose 
to display variables together in a single plot. To do so, right-click in a plot’s 
white space select Channel Grouping, and then select All.

To return to the default mode, use the Channel Grouping: None option.
5-69



5 The Design Tool

5-7
Normalizing Response Amplitudes
When you’re using the Channel Grouping: All option, you might find that the 
variables have very different scales, making it difficult to view them together. 
You can choose to normalize the curves, so that each expands or contracts to fill 
the available plot area.

For example, the plot below shows two plant outputs together (Channel 
Grouping: All option). The outputs have very different magnitudes. When 
plotted together, it’s hard to see much detail in the smaller response.

The plot below shows the normalized version, which displays each curve’s 
variations clearly. 

The y-axis scale is no longer meaningful, however. If you want to know a 
normalized signal’s amplitude, use a data marker (see “Adding a Data Marker” 
on page 5-66). Note that the two data markers on the plot below are at the same 
normalized y-axis location, but correspond to very different amplitudes in the 
original (unnormalized) coordinates.
0



Response Plots
5-71



5 The Design Tool

5-7
2



6

Function Reference

Functions — Categorical List (p. 6-2) A list of available functions, sorted by category

Functions — Alphabetical List (p. 6-5) A list of available functions, sorted alphabetically
 



6 Function Reference

6-2
Functions — Categorical List

MPC Controller

MPC Controller Characteristics

Function Name Description

d2d Change MPC controller’s sampling time

display Display properties of MPC controller

get Access/query property values

mpc Create MPC controller

set Set/modify MPC controller properties

setmpcsignals Set signal types in MPC plant model

getname Get I/O signal names in MPC prediction model

setname Set I/O signal names in MPC prediction model

getmpcdata Get privateMPC data structure

setmpcdata Get privateMPC data structure

Function Name Description

compare Compare two MPC objects

isempty Test true for empty MPC controller

mpcprops Provide help on MPC controller’s properties

mpchelp MPC property and function help

mpcverbosity Change the level of verbosity of the MPC Toolbox

pack Reduce size of MPC object in memory

size Display model output/input/disturbance dimensions



Functions — Categorical List
Linear Behavior of MPC Controller

MPC State

MPC Computation and Simulation

Function Name Description

cloffset Compute MPC closed-loop DC gain from output 
disturbances to measured outputs assuming 
constraints are inactive at steady state

ss Convert unconstrained MPC controller to state-space 
linear form

tf Convert unconstrained MPC controller to linear 
transfer function

zpk Convert unconstrained MPC controller to 
zero/pole/gain form

Function Name Description

mpcstate Define state for MPC controller

trim Compute the steady-state value of MPC controller 
state for given inputs and outputs values.

get Access/query MPC state properties

set Set/modify MPC state properties

Function Name Description

mpcmove Compute the MPC control action

sim Simulate closed-loop/open-loop response to arbitrary 
reference and disturbance signals

mpcsimopt Specify MPC simulation options

plot Plot responses generated by MPC simulations
6-3



6 Function Reference

6-4
State Estimation

Quadratic Programming

Function Name Description

getestim Extract model and gain used for observer design

setestim Modify an MPC object's linear state estimator

getindist Retrieves the unmeasured input disturbance model

setindist Modify the unmeasured input disturbance model

getoutdist Retrieve unmeasured output disturbance model

setoutdist Modify the unmeasured output disturbance model

Function Name Description

qpdantz Solve a convex quadratic program using 
Dantzig-Wolfe’s algorithm

qpsolver QP solver



Functions — Alphabetical List

6-5

Functions — Alphabetical List 6

This section contains function reference pages listed alphabetically. 



cloffset
6cloffsetPurpose Compute MPC closed-loop DC gain from output disturbances to measured 
outputs assuming constraints are inactive at steady state

Syntax DCgain=cloffset(MPCobj)

Description The cloff function computes the DC-gain from output disturbances to 
measured outputs, assuming constraints are not active, based on the feedback 
connection between Model.Plant and the linearized MPC controller, as 
depicted below.

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references, 
measured disturbances, and unmeasured input disturbances.

DCgain=cloffset(MPCobj) returns an nym-by-nym DC gain matrix DCgain, 
where nym is the number of measured plant outputs. MPCobj is the MPC object 
specifying the controller for which the closed-loop gain is calculated. 
DCgain(i,j) represents the gain from an additive (constant) disturbance on 
output j to measured output i. If row i contains all zeros, there will be no 
steady-state offset on output i.
6-6



cloffset
Examples See misocloffset.m in mpcdemos

See Also mpc, ss
6-7



compare
6comparePurpose Compare two MPC objects

Syntax yesno=compare(MPC1,MPC2)

Description The compare function compares the contents of two MPC objects MPC1, MPC2. If 
the design specifications (models, weights, horizons, etc.) are identical, then 
yesno is equal to 1.

Note  compare may return yesno=1 even if the two objects are not identical. 
For instance, MPC1 may have been initialized while MPC2 may have not, so that 
they may have different sizes in memory. In any case, if yesno=1 the behavior 
of the two controllers will be identical.

See Also mpc, pack
6-8



d2d
6d2dPurpose Change MPC controller’s sampling time

Syntax MPCobj=d2d(MPCobj,ts)

Description The d2d function changes the sampling time of the MPC controller MPCobj to 
ts. All models are sampled or resampled as soon as the QP matrices must be 
computed, e.g., when sim or mpcmove are used.

See Also mpc, set
6-9



get
6getPurpose Access/query MPC property values

Syntax Value = get(MPCobj,'PropertyName')
get(MPCobj)
Struct = get(MPCobj)

Description Value = get(MPCobj,'PropertyName') returns the current value of the 
property PropertyName of the MPC controller MPCobj. The string 
'PropertyName' can be the full property name (for example, 'UserData') or 
any unambiguous case-insensitive abbreviation (for example, 'user'). You can 
specify any generic MPC property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard 
MATLAB structure with the property names as field names and the property 
values as field values.

get(MPCobj) without a left-side argument displays all properties of MPCobj and 
their values.

Remark An alternative to the syntax

Value = get(MPCobj,'PropertyName')

is the structure-like referencing

Value = MPCobj.PropertyName

For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the MPC 
controller MPCobj.

See Also mpc, set
6-10



getestim
6getestimPurpose Extract model and gain used for observer design

Syntax M=getestim(MPCobj)
[M,A,Cm]=getestim(MPCobj)
[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)

[M,model,Index]=getestim(MPCobj,'sys')

Description M=getestim(MPCobj) extracts the estimator gain M used by the MPC controller 
MPCobj for observer design. The observer is based on the models specified in 
MPCobj.Model.Plant, in MPCobj.Model.Disturbance, by the output 
disturbance model (default is integrated white noise, see “Output Disturbance 
Model” on page 2-9), and by MPCobj.Model.Noise. 

The state estimator is based on the linear model (cf. “State Estimation” on 
page 2-8)

 

 

where v(k) are the measured disturbances, u(k) are the manipulated plant 
inputs, ym(k) are the measured plant outputs, and x(k) is the overall state 
vector collecting states of plant, unmeasured disturbance, and measurement 
noise models. 

The estimator used in the MPC Toolbox is described in “State Estimation” on 
page 2-8. The estimator’s equations are

Predicted Output Computation:

Measurement Update:
 

Time Update:
 

By combining these three equations, the overall state observer is

x k 1+( ) Ax k( ) Buu k( ) Bvv k( )++=

ym k( ) Cmx k( ) Dvmv k( )+=

ŷm k k 1–( ) Cmx̂ k k 1–( ) Dvmv k( )+=

x̂ k k( ) x̂ k k 1–( ) M ym k( ) ŷm k k 1–( )–( )+=

x̂ k 1 k+( ) Ax̂ k k )( ) Buu k( ) Bvv k( )++=
6-11



getestim
 

where L=AM.

[M,A,Cm]=getestim(MPCobj) also returns matrices A,Cm used for observer 
design. This includes plant model, disturbance model, noise model, offsets. The 
extended state is

x=plant states; disturbance models states; noise model states]

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj) retrieves the whole linear system 
used for observer design.

[M,model,Index]=getestim(MPCobj,'sys') retrieves the overall model used 
for observer design (specified in the Model field of the MPC object) as an LTI 
state-space object, and optionally a structure Index summarizing I/O signal 
types.

The extended input vector of model model is 

u=[manipulated vars;measured disturbances; 1; noise exciting disturbance 
model;noise exciting noise model]

Model model has an extra measured disturbance input v=1 used for handling 
possible nonequilibrium nominal values (see “Offsets” on page 2-4). 

Input, output, and state names and input/output groups are defined for model 
model.

The structure Index has the fields detailed in the following table.

Field Name Description

ManipulatedVariables Indices of manipulated variables within 
input vector 

MeasuredDisturbances Indices of measured disturbances within 
input vector (not including offset=1)

Offset Index of offset=1

WhiteNoise Indices of white noise signals within input 
vector

x̂ k 1 k+( ) A LCm–( )x̂ k k( ) Lym k( )Buu k( ) Bv LDvm–( )v k( )++=
6-12



getestim
The model returned by getestim does not include the additional white noise 
added on manipulated variables and measured disturbances to ease the 
solvability of the Kalman filter design, as described in Equation 2-5 on page 
2-10.

See Also setestim, mpc, mpcstate

MeasuredOutputs Indices of measured outputs within 
output vector

UnmeasuredOutputs Indices of unmeasured outputs within 
output vector

Field Name Description
6-13



getindist
6getindistPurpose Retrieve the unmeasured input disturbance model

Syntax model=getindist(MPCobj)

Description model=getindist(MPCobj) retrieves the linear discrete-time transfer function 
used to model unmeasured input disturbances in the MPC setup described by 
the MPC object MPCobj. Model model is an LTI object with as many outputs as 
the number of unmeasured input disturbances, and as many inputs as the 
number of white noise signals driving the input disturbance model. 

See Figure 2-2, Model Used for State Estimation, on page 2-8 for details about 
the overall model used in the MPC algorithm for state estimation purposes.

See Also mpc, setindist, setestim, getestim, getoutdist
6-14



getmpcdata
6getmpcdataPurpose Get private MPC data structure

Syntax mpcdata=getmpcdata(MPCobj)

Description mpcdata=getmpcdata(MPCobj) returns the private field MPCData of the MPC 
object MPCobj. Here, all internal QP matrices, models, estimator gains are 
stored at initalization of the object. You can manually change the private data 
structure using the setmpcdata command, although you may only need this for 
very advanced use of the MPC Toolbox. 

Note  Changes to the data structure may easily lead to unpredictable results.

See Also setmpcdata, set, get
6-15



getname
6getnamePurpose Get I/O signal names in MPC prediction model

Syntax name=getname(MPCobj,'input',I)
name=getname(MPCobj,'output',I)

Description name=getname(MPCobj,'input',I) returns the name of the I-th input signal 
in variable name. This is equivalent to name=MPCobj.Model.Plant. 
InputName{I}. The name property is equal to the contents of the corresponding 
Name field of MPCobj.DisturbanceVariables or 
MPCobj.ManipulatedVariables.

name=getname(MPCobj,'output',I) returns the name of the I-th output 
signal in variable name. This is equivalent to 
name=MPCobj.Model.Plant.OutputName{I}. The name property is equal to the 
contents of the corresponding Name field of MPCobj.OutputVariables.

See Also setname, mpc, set
6-16



getoutdist
6getoutdistPurpose Retrieve unmeasured output disturbance model

Syntax outdist=getoutdist(MPCobj)

[outdist,channels]=getoutdist(MPCobj)

Description outdist=getoutdist(MPCobj) retrieves the linear discrete-time transfer 
function used to model output disturbances in the MPC setup described by the 
MPC object MPCobj. Model outdist is an LTI object with as many outputs as 
the number of measured + unmeasured outputs, and as many inputs as the 
number of white noise signals driving the output disturbance model. 

See Figure 2-2, Model Used for State Estimation, on page 2-8 for details about 
the overall model used in the MPC algorithm for state estimation purposes.

[outdist,channels]=getoutdist(MPCobj) also returns the output channels 
where integrated white noise was added as an output disturbance model. This 
is only meaninful when the default output disturbance model is used, namely 
when MPCobj.OutputVariables(i).Integrators is empty for all channels i. 
The array channels is empty for user-provided output disturbance models.

See Also mpc, setoutdist, setestim, getestim, getindist
6-17



mpc
6mpcPurpose Create MPC controller

Syntax MPCobj=mpc(plant)
MPCobj=mpc(plant,ts)
MPCobj=mpc(plant,ts,p,m)
MPCobj=mpc(plant,ts,p,m,weights)
MPCobj=mpc(plant,ts,p,m,weights,MV,OV,DV)
MPCobj=mpc(models,ts,p,m,weights,MV,OV,DV)
MPCobj=mpc

Description MPCobj=mpc(plant) creates a MPC controller based on the discrete-time model 
model plant. The model can be specified either as an LTI object, or as an object 
in the System Identification Toolbox’s format (IDMODEL object), see Using 
Identified Models (p. 2-19).

MPCobj=mpc(plant,ts) also specifies the sampling time ts for the MPC 
controller. A continuous-time plant is discretized with sampling time ts. A 
discrete-time plant is resampled if its sampling time is different than the 
controller’s sampling time ts. If plant is a discrete-time model with 
unspecified sampling time, namely plant.ts=-1, then the MPC Toolbox 
assumes that the plant is sampled with the controller’s sampling time ts. 

MPCobj=mpc(plant,ts,p,m) also specifies prediction horizon p and control 
horizon m.

MPCobj=mpc(plant,ts,p,m,weights)also specifies the structure weights of 
input, input increments, and output weights (see “Weights” on page 8-7).

MPCobj=mpc(plant,ts,p,m,weights,MV,OV,DV) also specifies limits on 
manipulated variables (MV) and output variables (OV), as well as equal concern 
relaxation values, units, etc. Names and units of input disturbances can be also 
specified in the optional input DV. The fields of structures MV, OV, and DV are 
described in “ManipulatedVariables” on page 8-3, in “OutputVariables” on 
page 8-5, and in “DisturbanceVariables” on page 8-6, respectively).

MPCobj=mpc(models,ts,p,m,weights,MV,OV,DV) where model is a structure 
containing models for plant, unmeasured disturbances, measured 
disturbances, and nominal linearization values, as described in “Model” on 
page 8-8.

MPCobj=mpc returns an empty MPC object.
6-18



mpc
Note  Other MPC properties are specified by using set(MPCobj,Property1, 
Value1,Property2,Value2,...) or MPCobj.Property=Value. 

Examples Define an MPC controller based on the transfer function model s+1/(s2+2s), 
with sampling time Ts=0.1 s, and satisfying the input constraint -1≤ u ≤1:

Ts=.1;    %Sampling time
MV=struct('Min',-1,'Max',1);
p=20;
m=3;

mpc1=mpc(tf([1 1],[1 2 0]),Ts,p,m,[],MV);

See Also set, get
6-19



mpchelp
6mpchelpPurpose MPC property and function help

Syntax mpchelp
mpchelp name
out=mpchelp(`name')
mpchelp(MPCobj)
mpchelp(MPCobj,'name');
out=mpchelp(MPCobj,'name');

Description mpchelp provides a complete listing of Model Predictive Control Toolbox.

mpchelp name provides on-line help for the function or property name. 

out=mpchelp(`name') returns the help text in string, out.

mpchelp(obj) displays a complete listing of functions and properties for the 
MPC object, obj, along with the on-line help for the object's constructor.

mpchelp(obj,'name') displays the help for function or property, name, for the 
MPC object, obj.

out=mpchelp(obj,'name') returns the help text in string, out.

Examples To get help on the MPC method “getoutdist”, you can type

mpchelp getoutdist

See Also mpcprops
6-20



mpcmove
6mpcmovePurpose Compute the MPC control action

Syntax u=mpcmove(MPCobj,x,ym,r,v)

[u,Info]=mpcmove(MPCobj,x,ym,r,v)

Description u=mpcmove(MPCobj,x,ym,r,v) computes the current input move u(k), given 
the current estimated extended state x(k), the vector of measured outputs 
ym(k), the reference vector r(k), and the measured disturbance vector v(k), by 
solving the quadratic programming problem based on the parameters 
contained in the MPC controller MPCobj.

x is an mpcstate object. It is updated by mpcmove through the internal state 
observer based on the extended prediction model (see getestim for details). A 
default initial state x for the first call at time k=0 can be simply defined as 

x=mpcstate(MPCobj)

[u,Info]=mpcmove(MPCobj,x,ym,r,v) also returns the structure Info 
containing details about the optimal control calculations. Info has the fields 
listed below.

Field Name Description

Uopt Optimal input trajectory over the 
prediction horizon, returned as a p-by-nu 
dimensional array. 

Yopt Optimal output sequence over the 
prediction horizon, returned as a p-by-ny 
dimensional array

Xopt Optimal state sequence over the 
prediction horizon, returned as a p-by-nx 
dimensional array, where nx=total number 
of states of the extended state vector

Topt Prediction time vector (0:p-1)'
Slack Value of the ECR slack variable ε at 

optimum
6-21



mpcmove
To plot the optimal input trajectory, type

plot(Topt,Uopt)

The optimal output and state trajectories can be plotted similarly. The input, 
output, and state sequences Uopt, Yopt, Xopt, Topt correspond to the predicted 
open-loop optimal control trajectories solving the optimization problem 
described in “Optimization Problem” on page 2-5. The optimal trajectories 
might also help understand the closed-loop behavior. For instance, constraints 
that are active in the open-loop optimal trajectory only at late steps of the 
prediction horizon might not be active at all in the closed-loop MPC 
trajectories. The sequence of optimal manipulated variable increments can be 
retrieved from MPCobj.MPCData.MPCstruct.optimalseq. 

QPCode returns either 'feasible', 'infeasible' or 'unreliable' (the latter 
occurs when the QP solver terminates because the maximum number of 
iterations MPCobj.Optimizer.MaxIter is exceeded; see qpdantz on page 6-33). 
When QPCode='infeasible', then u is obtained by shifting the previous 
optimal sequence of manipulated variable rates (stored in 
MPCobj.MPCData.MPCstruct.optimalseq inside the MPC object MPCobj), and 
summing the first entry of this sequence to the previous vector of manipulated 
moves. You may set up different backup strategies for handling infeasible 
situations by discarding u and replacing it with a different emergency 
decision-variable vector.

r/v can be either a sample (no future reference/disturbance known in advance) 
or a sequence of samples (when a preview / look-ahead / anticipative effect is 
desired). In the latter case, they must be an array with as many rows as p and 
as many columns as the number of outputs/measured disturbances, 
respectively. If the number of rows is smaller than p, the last sample is 
extended constantly over the horizon, to obtain the correct size.

The default for y and r is MPCobj.Model.Nominal.Y. The default for v is 
obtained from MPCobj.Model.Nominal.U. The default for x is 

Iterations Number of iterations needed by the QP 
solver

QPCode Exit code of the QP solver

Field Name Description
6-22



mpcmove
mpcstate(MPCobj,MPCobj.Model.Nominal.X,0,0,U0) where U0 are the entries 
from MPCobj.Model.Nominal.U corresponding to manipulated variables.

To bypass the MPC Controller block’s internal estimator and use your own 
state observer to update the MPC state yourself, you can for instance use the 
syntax

xp=x.plant; xd=x.dist; xn=x.noise; % Save current state
u=mpcmove(MPCobj,x,ym,r,v); % x will be updated
% Now call to your state update function:
[xp,xd,xn]=my_estimator(xp,xd,xn,ym); % States get updated
x.plant=xp;x.dist=xd;x.noise=xn;

Examples Model predictive control of a multi-input single-output system (see the demo 
MISO.M). The system has three inputs (one manipulated variable, one 
measured disturbance, one unmeasured disturbance) and one output.

% Open-loop system parameters 

% True plant and true initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));
x0=[0 0 0 0 0]';

% MPC object setup

Ts=.2;             % sampling time

% Define type of input signals
model.InputGroup=struct('Manipulated',1,'Measured',2,'Unmeasured
',3);

% Define constraints on manipulated variable
MV=struct('Min',0,'Max',1);

Model=[]; % Reset structure Model
Model.Plant=sys;
% Integrator driven by white noise with variance=1000
Model.Disturbance=tf(sqrt(1000),[1 0]); 
6-23



mpcmove
p=[];       % Prediction horizon (take default one)
m=3;        % Control horizon
weights=[]; % Default value for weights

MPCobj=mpc(Model,Ts,p,m,weights,MV);

% Simulate closed loop system using MPCMOVE

Tstop=30;  %Simulation time

xmpc=mpcstate(MPCobj); % Initial state of MPC controller
x=x0;    % Initial state of Plant
r=1;     % Output reference trajectory

% State-space matrices of Plant model
[A,B,C,D]=ssdata(c2d(sys,Ts));

YY=[];XX=[];RR=[];
for t=0:round(Tstop/Ts)-1,
    XX=[XX,x];
    
    % Define measured disturbance signal
    v=0;
    if t*Ts>=10, v=1; end
    
    % Define unmeasured disturbance signal
    d=0;
    if t*Ts>=20, d=-0.5; end
    
    % Plant equations: output update 
    % (note: no feedrthrough from MV to Y, D(:,1)=0)
    y=C*x+D(:,2)*v+D(:,3)*d;
    YY=[YY,y];
    
    % Compute MPC law

u=mpcmove(MPCobj,xmpc,y,r,v);
        
    % Plant equations: state update
6-24



mpcmove
    x=A*x+B(:,1)*u+B(:,2)*v+B(:,3)*d;
end

% Plot results
plot(0:Ts:Tstop-Ts,YY);grid

See Also mpc, mpcstate, sim, setestim, getestim
6-25



mpcprops
6mpcpropsPurpose Provide help on MPC controller’s properties

Syntax mpcprops

Description mpcprops displays details on the generic properties of MPC controllers. It 
provides a complete list of all the fields of MPC objects with a brief description 
of each field and the corresponding default values.

See Also get, set,mpchelp
6-26



mpcsimopt
6mpcsimoptPurpose Specify MPC simulation options

Syntax SimOptions=mpcsimopt(mpcobj)

Description The purpose of mpcsimopt is to create an object SimOptions of class @mpcsimopt 
for specifying additional parameters for simulation with sim.

SimOptions=mpcsimopt(mpcobj) creates an empty object SimOptions which is 
compatible with the MPC object mpcobj. The fields of the object SimOptions 
and their description are reported in Table 8-12, MPC Simulation Options 
Properties, on page 8-14.

Examples We want to simulate the MPC control of a multi-input multi-output (MIMO) 
system under predicted / actual plant model mismatch (demo simmismatch.m). 
The system has two manipulated variables, two unmeasured disturbances, and 
two measured outputs.

% Open-loop system parameters 
p1 = tf(1,[1 2 1])*[1 1; 0 1];
plant = ss([p1 p1]);

% Define I/O types
plant=setmpcsignals(plant,'MV',[1 2],'UD',[3 4]);

% Define I/O names (optional)
set(plant,'InputName',{'mv1','mv2','umd3','umd4'});

% Model for unmeasured input disturbances
distModel = eye(2,2)*ss(-.5,1,1,0); 

% Create MPC object
mpcobj = mpc(plant,1,40,2);
mpcobj.Model.Disturbance = distModel;

% Closed-loop MPC simulation with model mismatch and unforeseen 
% unmeasured disturbance inputs

% Define plant model generating the data
p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2 tf(1,[1 1])*[0;1]]);
6-27



mpcsimopt
psim=setmpcsignals(psim,'MV',[1 2],'UD',[3 4 5]);

% Closed-loop simulation
dist=ones(1,3); % Unmeasured disturbance trajectory
refs=[1 2];     % Output reference trajectory
Tf=100; % Total number of simulation steps

options=mpcsimopt(mpcobj);
options.unmeas=dist;
options.model=psim;

sim(mpcobj,Tf,refs,options);

See Also sim
6-28



mpcstate
6mpcstatePurpose Define MPC controller state

Syntax xmpc=mpcstate(MPCobj,xp,xd,xn,u)

xmpc=mpcstate(MPCobj)

Description xmpc=mpcstate(MPCobj,xp,xd,xn,u) defines an mpcstate object for state 
estimation and optimization in an MPC control algorithm based on the MPC 
object MPCobj. The state of an MPC controller contains the estimates of the 
states x(k), xd(k), xm(k), where x(k) is the state of the plant model, xd(k) is the 
overall state of the input and output disturbance model, xm(k) is the state of the 
measurement noise model, and the value of the last vector u(k-1) of 
manipulated variables. The overall state is updated from the measured output 
ym(k) by a linear state observer (see “State Observer” on page 2-9)

xmpc=mpcstate(MPCobj) returns a default extended initial state that is com-
patible with the MPC controller MPCobj. Such a default state has plant state 
and previous input initialized at nominal values, and the states of the distur-
bance and noise models at zero.

Note that mpcstate objects are updated by mpcmove through the internal state 
observer based on the extended prediction model.

See Also getoutdist, setoutdist, setindist, getestim, setestim, ss, mpcmove
6-29



mpcverbosity
6mpcverbosityPurpose Change the level of verbosity of the MPC Toolbox

Syntax mpcverbosity on
mpcverbosity off
mpcverbosity 

Description mpcverbosity on enables messages displaying default operations taken by the 
MPC Toolbox during the creation and manipulation of MPC objects.

mpcverbosity off turns messages off.

mpcverbosity just shows the verbosity status.

By default, messages are turned on.

See also “Construction and Initialization” on page 8-12. 

See Also mpc
6-30



pack
6packPurpose Reduce size of MPC object in memory

Syntax pack(MPCobj)

Description pack(MPCobj) cleans up information build at initialization and stored in the 
MPCData field of the MPC object MPCobj. This reduces the amount of bytes in 
memory required to store the MPC object. For MPC objects based on large 
prediction models it is recommended to pack the object before saving the object 
to file, in order to minimize the size of the file.

See Also mpc, getmpcdata, setmpcdata, compare
6-31



plot
6plotPurpose Plot responses generated by MPC simulations

Syntax plot(MPCobj,t,y,r,u,v,d)

Description plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on the MPC 
object MPCobj. t is a vector of length Nt of time values, y is a matrix of output 
responses of size [Nt,Ny] where Ny is the number of outputs, r is a matrix of 
setpoints and has the same size as y, u is a matrix of manipulated variable 
inputs of size [Nt,Nu] where Nu is the number of manipulated variables, v is a 
matrix of measured disturbance inputs of size [Nt,Nv] where Nv is the number 
of measured disturbance inputs, and d is a matrix of unmeasured disturbance 
inputs of size [Nt,Nd] where Nd is the number of unmeasured disturbances 
input.

See Also sim, mpc
6-32



qpdantz
6qpdantzPurpose Solve a convex quadratic program using Dantzig-Wolfe’s algorithm 

Syntax [xopt,lambda,how]=qpdantz(H,f,A,b,xmin)

[xopt,lambda,how]=qpdantz(H,f,A,b,xmin,maxiter)

Description [xopt,lambda,how]=qpdantz(H,f,A,b,xmin) solves the convex quadratic 
program

 

using Dantzig-Wolfe’s active set method [2]. The Hessian matrix H should be 
positive definite. By default, xmin=1e-5. Vector xopt is the optimizer. Vector 
lambda contains the optimal dual variables (Lagrange multipliers). 

The exit flag how is either 'feasible', 'infeasible' or 'unreliable'. The 
latter occurs when the solver terminates because the maximum number 
maxiter of allowed iterations was exceeded.

The solver is implemented in qpsolver.dll. Dantzig-Wolfe’s algorithm uses 
the direction of the largest gradient, and the optimum is usually found after 
about n+q iterations, where n=dim(x) is the number of optimization variables, 
and q=dim(b) is the number of constraints. More than 3(n+q) iterations are 
rarely required (see Chapter 7.3 of [3]).

Examples Solve a random QP problem using quadprog from the Optimization Toolbox 
and qpdantz.

n=50;     % Number of vars

H=rand(n,n);H=H'*H;H=(H+H')/2;
f=rand(n,1);
A=[eye(n);-eye(n)];
b=[rand(n,1);rand(n,1)];

x1=quadprog(H,f,A,b);
[x2,how]=qpdantz(H,f,A,b,-100*ones(n,1));

min 1
2
---xTHx fTx+

subject to Ax b x xmin≥,≤
6-33



qpdantz
References [2] Fletcher, R. Practical Methods of Optimization, John Wiley & Sons, 
Chichester, UK, 1987.

[3] Dantzig, G.B. Linear Programming and Extensions, Princeton University 
Press, Princeton, 1963.
6-34



set
6setPurpose Set or modify MPC object properties

Syntax set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
set(sys,'Property')
set(sys)

Description The set function is used to set or modify the properties of an MPC controller 
(see “MPC Controller Object” on page 8-2 for background on MPC properties). 
Like its Handle Graphics counterpart, set uses property name/property value 
pairs to update property values.

set(MPCobj,'Property',Value) assigns the value Value to the property of the 
MPC controller MPCobj specified by the string 'Property'. This string can be 
the full property name (for example, 'UserData') or any unambiguous 
case-insensitive abbreviation (for example, 'user'). 

set(MPCobj,'Property1',Value1,'Property2',Value2,...) sets multiple 
property values with a single statement. Each property name/property value 
pair updates one particular property.

set(MPCobj,'Property') displays admissible values for the property specified 
by 'Property'. See “MPC Controller Object” on page 8-2 for an overview of 
legitimate MPC property values.

set(sys) displays all assignable properties of sys and their admissible values.

See Also mpc, get
6-35



setestim
6setestimPurpose Modify an MPC object's linear state estimator

Syntax setestim(MPCobj,M)
setestim(MPCobj,'default')

Description The setestim function modifies the linear estimator gain of an MPC object. 
The state estimator is based on the linear model (cf. “State Estimation” on 
page 2-8)

 

 

where v(k) are the measured disturbances, u(k) are the manipulated plant 
inputs, ym(k) are the measured plant outputs, and x(k) is the overall state 
vector collecting states of plant, unmeasured disturbance, and measurement 
noise models. The order of the states in x is the following: plant states; 
disturbance models states; noise model states].

setestim(MPCobj,M), where MPCobj is an MPC object, changes the default 
Kalman estimator gain stored in MPCobj to that specified by matrix M.

setestim(MPCobj,'default') restores the default Kalman gain.

The estimator used in the MPC Toolbox is described in “State Estimation” on 
page 2-8. The estimator’s equations are

Predicted Output Computation:

Measurement Update:
 

Time Update:
 

By combining these three equations, the overall state observer is

 

x k 1+( ) Ax k( ) Buu k( ) Bvv k( )++=

ym k( ) Cmx k( ) Dvmv k( )+=

ŷm k k 1–( ) Cmx̂ k k 1–( ) Dvmv k( )+=

x̂ k k( ) x̂ k k 1–( ) M ym k( ) ŷm k k 1–( )–( )+=

x̂ k 1 k+( ) Ax̂ k k )( ) Buu k( ) Bvv k( )++=

x̂ k 1 k+( ) A LCm–( )x̂ k k( ) Lym k( )Buu k( ) Bv LDvm–( )v k( )++=
6-36



setestim
where L=AM.

Note  The estimator gain M has the same meaning as the gain M in function 
DKALMAN of the Control Systems Toolbox.

Matrices A, Bu, Bv, Cm, Dvm can be retrieved using getestim as follows:

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)

As an alternative they can be retrieved from the internal structure 
MPCobj.MPCData.MPCstruct under the fields A,Bu,Bv,Cm,Dvm (see getmpcdata 
on page 6-15).

Examples To design an estimator by pole placement, you can use the commands 

[M,A,Cm]=getestim(MPCobj);
L=place(A',Cm',observer_poles)';
M=A\L;
setestim(MPCobj,M);

assuming that the linear system AM=L is solvable.

Note  The pair (A,Cm) describing the overall state-space realization of the 
combination of plant and disturbance models must be observable for the state 
estimation design to succeed. Observability is checked in the MPC Toolbox at 
two levels: (1) observability of the plant model is checked at construction of the 
MPC object, provided that the model of the plant is given in state-space form; 
(2) observability of the overall extended model is checked at initialization of 
the MPC object, after all models have been converted to discrete-time, 
delay-free, state-space form and combined together (see the note on page 2-11)

See Also getestim, mpc, mpcstate
6-37



setindist
6setindistPurpose Modify the unmeasured input disturbance model

Syntax setindist(MPCobj,'integrators')
setindist(MPCobj,'model,model)

Description setindist(MPCobj,'integrators') imposes the default disturbance model 
for unmeasured inputs, that is for each unmeasured input disturbance 
channel, an integrator is added unless there is a violation of observability, 
otherwise the input is treated as white noise with unit variance (this is 
equivalent to MPCobj.Model.Disturbance=[])

setindist(MPCobj,'model',model) sets the input disturbance model to model 
(this is equivalent to MPCobj.Model.Disturbance=model).

See Also mpc, getindist, setestim, getestim, setoutdist
6-38



setmpcdata
6setmpcdataPurpose Set private MPC data structure

Syntax setmpcdata(MPCobj,mpcdata)

Description setmpcdata(MPCobj,mpcdata) changes the private field MPCData of the MPC 
object MPCobj, where all internal QP matrices, models, estimator gains are 
stored at initalization of the object. You may only need this for very advanced 
use of the MPC Toolbox. 

Note  Changes to the data structure may easily lead to unpredictable results.

See Also getmpcdata, set, get, pack
6-39



setmpcsignals
6setmpcsignalsPurpose Set signal types in MPC plant model

Syntax P=setmpcsignals(P,SignalType1,Channels1,SignalType2,Channels2,...)

Description The purpose of setmpcsignals is to set I/O channels of the MPC plant model P. 
P must be an LTI object. Valid signal types, their abbreviations, and the 
channel type they refer to are listed below.

Unambiguous abbreviations of signal types are also accepted.

P=setmpcsignals(P) sets channel assignments to default, namely all inputs 
are manipulated variables (MVs), all outputs are measured outputs (MOs).
More generally, input signals that are not explicitly assigned are assumed to 
be MVs, while unassigned output signals are considered as MOs.

Examples We want to define an MPC object based on the LTI discrete-time plant model 
sys with four inputs and three outputs. The first and second input are 
measured disturbances, the third input is an unmeasured disturbance, the 
fourth input is a manipulated variable (default), the second output is an 
unmeasured, all other outputs are measured

sys=setmpcsignals(sys,'MD',[1 2],'UD',[3],'UO',[2]);
mpc1=mpc(sys);

Signal Type Abbreviation Channel

Manipulated MV Input

MeasuredDisturbances MD Input

UnmeasuredDisturbances UD Input

MeasuredOutputs MO Output

UnmeasuredOutputs UO Output
6-40



setmpcsignals
Note  When using setmpcsignals to modify an existing MPC object, be sure 
that the fields Weights, MV, OV, DV, Model.Noise, and Model.Disturbance are 
consistent with the new I/O signal types.

See Also mpc, set
6-41



setname
6setnamePurpose Set I/O signal names in MPC prediction model

Syntax setname(MPCobj,'input',I,name)
setname(MPCobj,'output',I,name)

Description setname(MPCobj,'input',I,name) changes the name of the I-th input signal 
to name. This is equivalent to MPCobj.Model.Plant.InputName{I}=name. Note 
that setname also updates the read-only Name fields of 
MPCobj.DisturbanceVariables and MPCobj.ManipulatedVariables.

setname(MPCobj,'output',I,name) changes the name of the I-th output 
signal to name. This is equivalent to MPCobj.Model.Plant.OutputName{I} 
=name. Note that setname also updates the read-only Name field of 
MPCobj.OutputVariables.

Note  The Name properties of ManipulatedVariables, OutputVariables, and 
DisturbanceVariables are read-only. You must use setname to assign signal 
names, or equivalently modify the Model.Plant.InputName and 
Model.Plant.OutputName properties of the MPC object.

See Also getname, mpc, set
6-42



setoutdist
6setoutdistPurpose Modify the unmeasured output disturbance model

Syntax setoutdist(MPCobj,'integrators')
setoutdist(MPCobj,'remove',channels)
setoutdist(MPCobj,'model',model)

Description setoutdist(MPCobj,'integrators') specifies the default method output 
disturbance model, based on the specs stored in 
MPCobj.OutputVariables.Integrator and 
MPCobj.Weights.OutputVariables. Output integrators are added according to 
the following rule:

1 Outputs are ordered by decreasing output weight (in case of time-varying 
weights, the sum of the absolute values over time is considered for each 
output channel. In case of equal output weight, the order within the output 
vector is followed); 

2 By following such order, an output integrator is added per measured 
outputs, unless there is a violation of observability or the corresponding 
value in MPCobj.OutputVariables.Integrator is zero. A warning message 
is given when an integrator is added on an unmeasured output channel.

setoutdist(MPCobj,'remove',channels) removes integrators from the 
output channels specified in vector channels. This corresponds to setting 
MPCobj.OutputVariables(channels).Integrator=0. The default for 
channels is (1:ny), where ny is the total number of outputs, that is, all output 
integrators are removed.

setoutdist(MPCobj,'model',model) replaces the array of output integrators 
designed by default according to MPCobj.OutputVariables.Integrator with 
the LTI model model. The model must have ny outputs. If no model is specified, 
then the default model based on the specs stored in 
MPCobj.OutputVariables.Integrator and 
MPCobj.Weights.OutputVariables is used (same as setoutdist(MPCobj, 
'integrators').

See Also mpc, getestim, setestim, setoutdist, setindist
6-43



sim
6simPurpose Simulate closed-loop/open-loop response to arbitrary reference and 
disturbance signals

Syntax sim(MPCobj,T,r)

sim(MPCobj,T,r,v)

sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions)

[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...)

Description The purpose of sim is to simulate the MPC controller in closed-loop with a 
linear time-invariant model, which, by default, is the plant model contained in 
MPCobj.Model.Plant. As an alternative sim can simulate the open-loop 
behavior of the model of the plant, or the closed-loop behavior in the presence 
of a model mismatch between the prediction plant model and the model of the 
process generating the output data.

sim(MPCobj,T,r) simulates the closed-loop system formed by the plant model 
specified in MPCobj.Model.Plant and by the MPC controller specified by the 
MPC object MPCobj, and plots the simulation results. T is the number of 
simulation steps. r is the reference signal array with as many columns as the 
number of output variables.

sim(MPCobj,T,r,v) also specifies the measured disturbance signal v, that has 
as many columns as the number of measured disturbances. 

Note  The last sample of r/v is extended constantly over the simulation 
horizon, to obtain the correct size.

sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions) specifies 
the simulation options object SimOptions, such as initial states, input/output 
noise and unmeasured disturbances, plant mismatch, etc. See mpcsimopt on 
page 6-27 for details.

Without output arguments, sim automatically plots input and output 
trajectories.

[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...) instead of plotting 
closed-loop trajectories returns the sequence of plant outputs y, the time 
sequence t (equally spaced by MPCobj.Ts), the sequence u of manipulated 
6-44



sim
variables generated by the MPC controller, the sequence xp of states of the 
model of the plant used for simulation, the sequence xmpc of states of the MPC 
controller (provided by the state observer), and the options object SimOptions 
used for the simulation.

The descriptions of the input arguments and their default values are shown in 
the table below.

r is an array with as many columns as outputs, v is an array with as many 
columns as measured disturbances. The last sample of r/v/d/n is extended 
constantly over the horizon, to obtain the correct size.

The output arguments of sim are detailed below.

Input Argument Description Default

MPCobj MPC object specifying the 
parameters of the MPC control 
law

None

T Number of simulation steps Largest row-size of 
r,v,d,n

r Reference signal MPCobj.Model.Nomi
nal.Y

v Measured disturbance signal Entries from 
MPCobj.Model.Nomi
nal.U

SimOptions Object of class @mpcsimopt 
containing the simulation 
parameters (See )

[]

Output Argument Description

y Sequence of controlled plant outputs (without noise 
added on measured ones)

t Time sequence (equally spaced by MPCobj.Ts)
6-45



sim
Examples We want to simulate the MPC control of a multi-input single-output system 
(the same model as in demo misosim.m). The system has one manipulated 
variable, one measured disturbance, one unmeasured disturbance, and one 
output.

%Plant model and initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));

% MPC object setup
Ts=.2;             % sampling time
sysd=c2d(sys,Ts); % prediction model

% Define type of input signals
sysd=setmpcsignals(model,'MV',1,'MD',2,'UD',3);

MPCobj=mpc(sysd); % Default weights and horizons

% Define constraints on manipulated variable
MPCobj.MV=struct('Min',0,'Max',1);

Tstop=30;           % Simulation time

Tf=round(Tstop/Ts); % Number of simulation steps
r=ones(Tf,1);       % Reference trajectory
v=[zeros(Tf/3,1);ones(2*Tf/3,1)]; % Measured dist. trajectory
sim(MPCobj,Tf,r,v);

See Also mpcsimopt, mpc, mpcmove

u Sequence of manipulated variables generated by 
MPC

xp Sequence of states of plant model (from Model or 
SimOptions.Model)

xmpc Sequence of states of MPC controller (estimates of 
the extended state) This is a structure with the same 
fields as the mpcstate object.

Output Argument Description
6-46



size
6sizePurpose Display model output/input/disturbance dimensions

Syntax sizes=size(MPCobj)

Description sizes=size(MPCobj) returns the row vector sizes = [nym nu nyu nv nd] 
associated with the MPC object MPCobj, where nym is the number of measured 
controlled outputs, nu is the number of manipulated inputs, nyu is the number 
of unmeasured controlled outputs, nv is the number of measured disturbances, 
and nd is the number of unmeasured disturbances.

size(MPCobj) by itself makes a nice display.

See Also mpc, set
6-47



ss
6ssPurpose Convert unconstrained MPC controller to state-space linear form

Syntax sys=ss(MPCobj)
[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj)
[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj,ref_preview,md_previ

ew,name_flag)

Description The ss utility returns the linear controller sys as an LTI system in ss form 
corresponding to the MPC controller MPCobj when the constraints are not 
active. The purpose is to use the linear equivalent control in the Control 
System Toolbox for sensitivity analysis and other linear analysis.

sys=ss(MPCobj) returns the linear discrete-time dynamic controller sys 

 

where ym is the vector of measured outputs of the plant, and u is the vector of 
manipulated variables. The sampling time of controller sys is MPCobj.Ts.

[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj) returns the linearized 
MPC controller in its full version, that has the following structure

 

Note  vector x includes the states of the observer (plant+disturbance+noise 
model states) and the previous manipulated variable u(k-1).

In the general case of nonzero offsets, ym (as well as r, v, utarget) must be 
interpreted as the difference between the vector and the corresponding offset. 
Vectors Boff, Doff are constant terms due to nonzero offsets, in particular they 
are nonzero if and only if MPCobj.Model.Nominal.DX is nonzero 
(continuous-time prediction models), or 
MPCobj.Model.Nominal.Dx-MPCobj.Model.Nominal.X is nonzero 

x k 1+( ) Ax k( ) Bym k( )+=

u k( ) Cx k( ) Dym k( )+=

x k 1+( ) Ax k( ) Bym k( ) Brr k( ) Bvv k( ) Bututarget k( ) Boff+ + + + +=

u k( ) Cx k( ) Dym k( ) Drr k( ) Dvv k( ) Dututarget k( ) Doff+ + + + +=
6-48



ss
(discrete-time prediction models). Note that when Nominal.X is an equilibrium 
state, Boff, Doff are zero.

Only the following fields of MPCobj are used when computing the state-space 
model: Model, PredictionHorizon, ControlHorizon, Ts, Weights.

[sys,...]=ss(MPCobj,ref_preview,md_preview,name_flag) allows you to 
specify if the MPC controller has preview actions on the reference and 
measured disturbance signals. If the flag ref_preview='on', then matrices Br 
and Dr multiply the whole reference sequence:

 

Similarly if the flag md_preview='on', then matrices Br and Dr multiply the 
whole measured disturbance sequence:

 

The optional input argument name_flag='names' adds state, input, and output 
names to the created LTI object.

Examples To get the transfer function LTIcon from (ym,r) to u,

[sys,Br,Dr]=ss(MPCobj);
set(sys,'B',[sys.B,Br],'D',[sys.D,Dr]);

See Also mpc, set, tf, zpk

x k 1+( ) Ax k( ) Bym k( ) Br r k( ) r k 1+( ) … r k p 1–+( );;;[ ] …+ + +=

u k( ) Cx k( ) Dym k( ) Dr r k( ) r k 1+( ) … r k p 1–+( );;;[ ] …+ + +=

x k 1+( ) Ax k( ) … Bv v k( ) v k 1+( ) … v k p+( );;;[ ] …+ + +=

u k( ) Cx k( ) … Dv v k( ) v k 1+( ) … v k p+( );;;[ ] …+ + +=
6-49



tf
6tfPurpose Convert unconstrained MPC controller to linear transfer function

Syntax sys=tf(MPCobj)

Description The tf function computes the transfer function of the linear controller 
ss(MPCobj) as an LTI system in tf form corresponding to the MPC controller 
when the constraints are not active. The purpose is to use the linear equivalent 
control in the Control Systems Toolbox for sensitivity and other linear analysis.

See Also ss, zpk
6-50



trim
6trimPurpose Compute the steady-state value of the MPC controller state for given inputs 
and outputs values

Syntax x=trim(MPCobj,y,u)

Description The trim function finds a steady-state value for the plant state vector such that 
x=Ax+Bu, y=Cx+Du, or the best approximation of such an x in a least squares 
sense, sets noise and disturbance model states at zero, and forms the extended 
state vector.

See Also mpc, mpcstate
6-51



zpk
6zpkPurpose Convert unconstrained MPC controller to zero/pole/gain form

Syntax sys=zpk(MPCobj)

Description The zpk function computes the zero-pole-gain form of the linear controller 
ss(MPCobj) as an LTI system in zpk form corresponding to the MPC controller 
when the constraints are not active. The purpose is to use the linear equivalent 
control in the Control Systems Toolbox for sensitivity and other linear analysis.

See Also ss, tf
6-52



7

Block Reference

Blocks — Alphabetical List (p. -2) A list of available blocks, sorted alphabetically
 



7 

7-2

Blocks — Alphabetical List 7

This section contains function reference pages listed alphabetically.



MPC Controller Block
7MPC Controller BlockPurpose Compute the MPC control law

Library MPC Simulink Library

Description The MPC Controller Block receives the current measured output, reference 
signal, and measured disturbance signal, and outputs the optimal manipulated 
variables by solving a quadratic program. The block is based on an MPC object, 
which provides performance and constraint specifications, as well as the 
sampling time of the block.

Dialog Box 

Figure 7-1:  MPC Controller Block Mask
7-3



MPC Controller Block
MPC controller
MPC controller object, definining prediction model, weights, constraints, 
sampling time, etc.

Initial controller state
Initial state of the MPC controller. This must be a valid mpcstate object.

Reference signal
Choose whether the reference signal is loaded from the workspace or 
received from the block input port. If the signal is received from the 
workspace, the checkbox Look Ahead is enabled, and anticipative action 
can be selected (see “Look Ahead and Signals from the Workspace” at page 
page 3-4)

Measured disturbance
Choose whether the disturbance signal is loaded from the workspace or 
received from the block input port. If the signal is received from the 
workspace, the checkbox Look Ahead is enabled, and anticipative action 
can be selected (see “Look Ahead and Signals from the Workspace” at page 
page 3-4)

The mask requires that you specify a valid MPC controller object. There are 
two ways of providing an MPC controller object:

1 Load an existing MPC object from the workspace, or 

2 Push the Design button to open the MPC Design Tool and design the MPC 
controller object there. Closed-loop simulations can be run while the MPC 
controller is edited in the MPC Design Tool. In this case, the controller 
parameters used for simulating the Simulink diagram are those specified in 
the MPC Design Tool, so that the parameters of the controller can be more 
easily tuned. 

In the latter case, the designed controller must be exported as an MPC object 
to the workspace when the Tool is closed, so that the new changes can be still  
used for simulation.

When no MPC controller is specified in the edit box, the Design button will 
attempt at constructing a default MPC controller by automatically getting a 
linearized model from the Simulink diagram.
7-4



MPC Controller Block
The check box Enable input port for measured disturbance is used to 
resize the block. If the check box is not selected, the block has two input signals, 
namely measured outputs and references. When the check box is selected, the 
block has measured disturbances as the third input signal.

See Also mpc, mpcstate
7-5



MPC Controller Block
7-6



8

Object Reference

This chapter provides reference material for the objects used with the command-line functions. 
Descriptions of the object properties and fields are given in the following sections.

MPC Controller Object (p. 8-2) Description of the MPC object containing the parameters 
defining the MPC control law (prediction horizon, 
weights, constraints, etc.).

MPC State Object (p. 8-13) Description of the MPC object containing the state of an 
MPC controller.

MPC Simulation Options Object 
(p. 8-14)

Description of the MPC object containing options for 
simulating MPC controllers.
 



8 Object Reference

8-2
MPC Controller Object
All the parameters defining the MPC control law (prediction horizon, weights, 
constraints, etc.) are stored in an MPC object, whose properties are listed 
inTable 8-1.

Table 8-1:  MPC Controller Object

Property Description

ManipulatedVariables 
(or MV or Manipulated 
or Input)

Input and input-rate upper and lower bounds, 
ECR values, names, units, and input target

OutputVariables (or 
OV or Controlled or 
Output)

Output upper and lower bounds, ECR values, 
names, units

DisturbanceVariables 
(or DV or Disturbance)

Disturbance names and units

Weights Weights defining the performance function

Model Plant, input disturbance, and output noise 
models, and nominal conditions.

Ts Controller’s sampling time

Optimizer Parameters for the QP solver

PredictionHorizon Prediction horizon

ControlHorizon Number of free control moves or vector of 
blocking moves

History Creation time

Notes User notes (text)

UserData Any additional data



MPC Controller Object
ManipulatedVariables
ManipulatedVariables (or MV or Manipulated or Input) is an nu-dimensional 
array of structures (nu = number of manipulated variables), one per 
manipulated variable. Each structure has the fields described in Table 8-2, 
where p denotes the prediction horizon.

MPCData (private) Matrices for the QP problem and other 
accessorial data

Version (private) MPC Toolbox version number

Table 8-2:  Structure ManipulatedVariables  

Field Name Content Default

Min 1 to p dimensional vector of lower 
constraints on a manipulated variable 
u

-Inf

Max 1 to p dimensional vector of upper 
constraints on a manipulated variable 
u

Inf

MinECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the lower constraints on u

0

MaxECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the upper constraints on u

0

Target 1 to p dimensional vector of target 
values for the input variable u

0

RateMin 1 to p dimensional vector of lower 
constraints on the rate of a 
manipulated variable u

-Inf if problem 
is 
unconstrained, 
otherwise -10

Table 8-1:  MPC Controller Object  (Continued)

Property Description
8-3



8 Object Reference

8-4
Note  Rates refer to the difference ∆u(k)=u(k)-u(k-1). Constraints and weights 
based on derivatives du/dt of continuous-time input signals must be properly 
reformulated for the discrete-time difference ∆u(k), using the approximation 
du/dt ≅ ∆u(k)/Ts.

RateMax 1 to p dimensional vector of upper 
constraints on the rate of a 
manipulated variable u

Inf

RateMinECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the lower constraints on the rate of u

0

RateMaxECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the upper constraints on the rate of u

0

Name Name of input signal. This is 
inherited from InputName of the LTI 
plant model 

InputName of 
LTI plant model

Units String specifying the measurement 
units for the manipulated variable

' '

Table 8-2:  Structure ManipulatedVariables  (Continued) 

Field Name Content Default



MPC Controller Object
OutputVariables
OutputVariables (or OV or Controlled or Output) is an ny-dimensional array 
of structures (ny = number of outputs), one per output signal. Each structure 
has the fields described in Table 8-3, where p denotes the prediction horizon.

In order to reject constant disturbances due for instance to gain nonlinearities, 
the default output disturbance model used in the MPC Toolbox is a collection 
of integrators driven by white noise on measured outputs (see “Output 
Disturbance Model” on page 2-9). Output integrators are added according to 
the following rule: 

1 Measured outputs are ordered by decreasing output weight (in case of 
time-varying weights, the sum of the absolute values over time is considered 

Table 8-3:  Structure OutputVariables  

Field Name Content Default

Min 1 to p dimensional vector of lower 
constraints on an output y

-Inf

Max 1 to p dimensional vector of upper 
constraints on an output y

Inf

MinECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the lower constraints on an output y

1

MaxECR 1 to p dimensional vector describing 
the equal concern for the relaxation of 
the upper constraints on an output y

1

Name Name of output signal. This is 
inherited from OutputName of the LTI 
plant model 

OutputName of 
LTI plant model

Units String specifying the measurement 
units for the measured output

' '

Integrator Magnitude of integrated white noise 
on the output channel (0=no 
integrator)

[]
8-5



8 Object Reference

8-6
for each output channel, and in case of equal output weight, the order within 
the output vector is followed)

2 By following such order, an output integrator is added per measured 
outputs, unless there is a violation of observability, or the user forces it by 
zeroing the corresponding value in OutputVariables.Integrators).

By default, OutputVariables.Integrators is empty on all outputs. This 
enforces the default action of the MPC Toolbox, namely add integrators on 
measured outputs, do not add integrators on unmeasured outputs. By setting 
the entry of OutputVariables(i).Integrators to zero, no attempt will be 
made to add integrated white noise on the i-th output . On the contrary, by 
setting the entry of OutputVariables(i).Integrators to one, an attempt will 
be made to add integrated white noise on the i-th output (see getoutdist on 
page 6-17)

DisturbanceVariables
DisturbanceVariables (or DV or Disturbance) is an (nv+nd)-dimensional array 
of structures (nv = number of measured input disturbances, nd = number of 
unmeasured input disturbances), one per input disturbance. Each structure 
has the fields described in Table 8-4.

The order of the disturbance signals within the array DisturbanceVariables 
is the following: the first nv entries relate to measured input disturbances, the 
last nd entries relate to unmeasured input disturbances.

Table 8-4:  Structure DisturbanceVariables

Field Name Content Default

Name Name of input signal. This is 
inherited from InputName of the LTI 
plant model 

InputName of 
LTI plant model

Units String specifying the measurement 
units for the manipulated variable

' '



MPC Controller Object
Note  The Name properties of ManipulatedVariables, OutputVariables, and 
DisturbanceVariables are read only. You can set signal names in the 
Model.Plant.InputName and Model.Plant.OutputName properties of the MPC 
object, for instance by using the method setname.

Weights
Weights is the structure defining the weighting matrices. Unlike the 
InputSpecs and OutputSpecs that are arrays of structures, weights is a single 
structure, whose fields are described in Table 8-5, where p denotes the 
prediction horizon, nu the number of manipulated variables, ny the number of 
output variables.

Table 8-5:  Structure Weights 

Field Name Content Default

ManipulatedVariables 
(or MV or Manipulated or 
Input)

nu-by-(1 to p) 
dimensional array of 
input weights

zeros(nu,1)

ManipulatedVariablesRa
te (or MVRate or 
ManipulatedRate or 
InputRate)

nu-by-(1 to p) 
dimensional array of 
input-rate weights

0.1*ones(nu,1)

OutputVariables (or OV 
or Controlled or Output)

ny-by-(1 to p) 
dimensional array of 
output weights

1 (The default for output weights is 
the following: if nu>=ny, all outputs are 
weighted with unit weight; if nu<ny, nu 
outputs are weighted with unit weight 
(with a preference on measured 
outputs), while the remaining outputs 
are not weighted.)

ECR Weight on the slack 
variable ε used for 
softening the 
constraints

1e5*(max weight)
8-7



8 Object Reference

8-8
ManipulatedVariables, ManipulatedVariablesRate, and OutputVariables 
are arrays with as many columns as inputs or outputs. If weights are time 
invariant, then ManipulatedVariables, ManipulatedVariablesRate, and 
OutputVariables are row vectors, while for time-varying weights, they are an 
array with up to p rows. The last row is repeated by default in case the matrix 
has a number of rows smaller than the prediction horizon p.

The default ECR weight is 105 times the largest weight specified in 
ManipulatedVariables, ManipulatedVariablesRate, and OutputVariables.

Note  All weights must be greater than or equal to zero. If all weights on 
manipulated variable increments are strictly positive, the resulting QP 
problem is always strictly convex. If some of those weights are zero, the 
Hessian matrix of the QP problem may become only positive semidefinite. In 
order to keep the QP problem always strictly convex, if the condition number 
of the Hessian matrix K∆U is larger than 1012, the quantity 10*sqrt(eps) is 
added on each diagonal term. This may only occur when all input rates are not 
weighted (W∆u=0) (see note on page 2-16)

Model
The property Model specifies plant, input disturbance, and output noise 
models, and nominal conditions, according to the model setup described in 
Figure 2-2. It is specified through a structure containing the fields reported in 
Table 8-6.

Table 8-6:  Structure Model Describing the Models Used by MPC

Field Name Content Default

Plant LTI  model (or IDMODEL) of 
the plant 

No default

Disturbance LTI model describing color of 
input disturbances

An integrator on 
each Unmeasured 
input channel



MPC Controller Object
Note  Direct feedthrough from manipulated variables to measured outputs in 
Model.Plant is not allowed. See note on page 2-3.

The type of input and output signals is assigned either through the InputGroup 
and OutputGroup properties of Model.Plant, or, more conveniently, through 
function setmpcsignals, according to the nomenclature described in Table 8-7 
and Table 8-8.

Noise LTI model describing color of 
plant output measurement 
noise

Unit white noise 
on each 
measured output 
= identity static 
gain

Nominal Structure containing the state, 
input, and output values where 
Model.Plant is linearized

See Table 8-9

Table 8-7:  Input Groups in Plant Model

Name Value

ManipulatedVariables (or 
MV or Manipulated or Input)

Indices of manipulated variables

MeasuredDisturbances (or 
MD or Measured)

Indices of measured disturbances

UnmeasuredDisturbances 
(or UD or Unmeasured)

Indices of unmeasured disturbances

Table 8-6:  Structure Model Describing the Models Used by MPC  (Continued)

Field Name Content Default
8-9



8 Object Reference

8-1
By default, all inputs are manipulated variables, and all outputs are measured. 

Note  With this current release, the InputGroup and OutputGroup properties 
of LTI objects are defined as structures, rather than cell arrays (see the 
Control System Toolbox documentation for more details). 

The structure Nominal contains the nominal values for states, inputs, outputs 
and state derivatives/differences at the operating point where Model.Plant 
was linearized. The fields are reported in Table 8-9 (see “Offsets” on page 2-4).

Table 8-8:  Output Groups in Plant Model

Name Value

MeasuredOutputs (or MO or 
Measured)

Indices of measured outputs

UnmeasuredOutputs (or UO 
or Unmeasured)

Indices of unmeasured outputs

Table 8-9:  Nominal Values at Operating Point

Field Description Default

X Plant state at operating point 0

U Plant input at operating point, 
including manipulated variables, 
measured and unmeasured 
disturbances

0

Y Plant output at operating point 0

DX For continuous-time models, DX is 
the state derivative at operating 
point: DX=f(X,U). For discrete-time 
models, DX=x(k+1)-x(k)=f(X,U)-X.

0

0



MPC Controller Object
Ts
Sampling time of the MPC controller. By default, if Model.Plant is a 
discrete-time model, Ts=Model.Plant.ts. For continuous-time plant models, 
you must specify a sampling time for the MPC controller.

Optimizer
Parameters for the QP optimization. Optimizer is a structure with the fields 
reported in Table 8-10.

MinOutputECR is a positive scalar used to specify the minimum allowed ECR for 
output constraints. If values smaller than MinOutputECR are provided in the 
OutputVariables property of the MPC objects a warning message is issued and 
the value is raised to MinOutputECR.

PredictionHorizon
PredictionHorizon is an integer value expressing the number p of sampling 
steps of prediction.

ControlHorizon
ControlHorizon is either a number of free control moves, or a vector of 
blocking moves (see “Optimization Variables” on page 2-13).

History
History stores the time the MPC controller was created.

Table 8-10:  Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations 
allowed in the QP solver

200

Trace On/off 'off'
Solver QP solver used (only 'ActiveSet') 'ActiveSet'
MinOutputECR Minimum positive value allowed for 

OutputMinECR and OutputMaxECR
1e-10
8-11



8 Object Reference

8-1
Notes
Notes stores user’s notes as a cell array of strings.

UserData
Any additional data stored within the MPC controller object

MPCData
MPCData is a private property of the MPC object used for storing intermediate 
operations, QP matrices, internal flags, etc. See getmpcdata on page 6-15 and 
setmpcdata on page 6-39.

Version
Version is a private property indicating the MPC Toolbox version number.

Construction and Initialization
An MPC object is built in two steps. The first step happens at construction of 
the object when the object constructor mpc is invoked, or properties are changed 
by a set command. At this first stage, only basic consistency checks are 
performed, such as dimensions of signals, weights, constraints, etc. The second 
step happens at initialization of the object, namely when the object is used for 
the first time by methods such as mpcmove and sim, that require the full 
computation of the QP matrices and the estimator gain. At this second stage, 
further checks are performed, such as a test of observability of the overall 
extended model. 

Informative messages are displayed in the command window in both phases, 
you can turn them on or off using the mpcverbosity command.
2



MPC State Object
MPC State Object
The mpcstate object type contains the state of an MPC controller. Its properties 
are listed in Table 8-11.

The command 

mpcstate(mpcobj)

returns a zero extended initial state compatible with the MPC object mpcobj, 
and with mpcobj.Plant and mpcobj.LastInput initialized at the nominal 
values specified in mpcobj.Model.Nominal.

Table 8-11:  MPC State Object Properties

Property Description

Plant Array of plant states. Values are absolute, i.e., 
they include possible state offsets (cf. 
Model.Nominal.X)

Disturbance Array of states of unmeasured disturbance 
models. This contains the states of the input 
disturbance model and, appended below, the 
states of the unmeasured output disturbances 
model

Noise Array of states of measurement noise model

LastInput Array of previous manipulated variables u(k-1). 
Values are absolute, i.e., they include possible 
input offsets (cf. Model.Nominal.U).
8-13



8 Object Reference

8-1
MPC Simulation Options Object
The mpcsimopt object type contains various simulation options for simulating 
an MPC controller with the command sim. Its properties are listed in 
Table 8-12.

The command 

SimOptions=mpcsimopt(mpcobj)

Table 8-12:  MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of plant model generating 
the data

ControllerInitialState Initial condition of the MPC controller. This 
must be a valid @mpcstate object

UnmeasuredDisturbance Unmeasured disturbance signal entering the 
plant

InputNoise Noise on manipulated variables

OutputNoise Noise on measured outputs

RefLookAhead Preview on reference signal ('on' or 'off')

MDLookAhead Preview on measured disturbance signal ('on' 
or 'off')

Constraints Use MPC constraints ('on' or 'off')

Model Model used in simulation for generating the 
data. 

StatusBar Display wait bar ('on' or 'off')

MVSignal Sequence of manipulated variables (with 
offsets) for open-loop simulation (no MPC 
action)

OpenLoop Performs open-loop simulation 
4



MPC Simulation Options Object
returns an empty @mpcsimopt object. You must use set / get to change 
simulation options.

UnmeasuredDisturbance is an array with as many columns as unmeasured 
disturbances, InputNoise and MVSignal are arrays with as many columns as 
manipulated variables, OutputNoise is an array with as many columns as 
measured outputs. The last sample of the array is extended constantly over the 
horizon to obtain the correct size.

Note  Nonzero values of ControllerInitialState.LastMove are only 
meaningful if there are constraints on the increments of the manipulated 
variables.

The property Model is useful for simulating the MPC controller under model 
mismatch. The LTI object specified in Model can be either a replacement for 
Model.Plant, or a structure with fields Plant, Nominal. By default, Model is 
equal to MPCobj.Model (no model mismatch). If Model is specified, then 
PlantInitialState refers to the initial state of Model.Plant and is defaulted 
to Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U and Model.Nominal.Y are 
inherited from MPCobj.Model.Nominal. Model.Nominal.X/DX is only inherited 
if both plants are state-space objects with the same state dimension.
8-15



8 Object Reference

8-1
6



Index
B
blocking

specification 5-36
buttons

tool bar 5-6

C
constraints

hard vs. soft 1-13
manipulated variables 5-40
optimization problem 2-5
output variables 5-41
overview 1-7
soft 1-13
softening 5-41
specification 8-3
specification dialog 5-39
tolerance band 1-13

Control and Estimation Tools Manager
MPC Design Tool 5-2

control horizon 1-8
specification 5-36

control interval 1-5
specification 5-36

controller settings
blocking 5-36
control interval 5-36
estimation 5-49
horizons 5-36
overall robustness 5-46
plant model 5-36

controller specifications
constraint softening 5-41
constraints 5-39
relaxation bands 5-41
weights 5-46
controllers
copying 5-29
creating 5-29
deleting 5-29
export button 5-29
export menu 5-5
exporting 5-19
from MAT-file 5-17
from workspace 5-16
import button 5-29
import menu 5-4
importing 5-15
notes 5-29
renaming 5-7
specification 5-36
summary listing 5-29

D
data markers 5-66
DC gain 6-6
delays

horizons for 1-8
description

specification 5-22
design tool

closing 5-4
renaming tree nodes 5-7
starting 5-2
tree navigation 5-7

disturbance estimation
controller settings 5-49

disturbances
input model 6-14
inputs 5-53
internal state 6-29
Index-1



Index

Ind
output model 6-17
outputs 5-51
simulation specification 5-58
type definition 6-40

duration
specification 5-58

E
estimation

controller settings 5-49
gain 6-36
Kalman filter 2-10
model extraction 6-11
model form 2-8
state 1-13
See also  observer

F
feedforward compensation 1-4
file menu

close design tool 5-4
load saved design 5-3
new design 5-3
save current design 5-4

H
hold

zero-order 1-7
horizons

control 1-8
prediction 1-8
ex-2
I
identified models 2-19
importing

controller from MAT-file 5-17
controller from workspace 5-16
controllers 5-15
model from MAT-file 5-11
model from workspace 5-10

inputs
disturbance model 6-14
property specifications 5-22

inverse-response 1-8

K
Kalman filter 2-10

L
linearization

during model import 5-12
offset 2-4
operating point selection 5-14
options 5-14
procedure 5-13

load button 5-6

M
manipulated variables

example 1-3
setpoints 1-12

MAT-file
controller export 5-19
controller import 5-17
model import 5-11

measured disturbances



Index
example 1-3
memory 6-8
menus

file 5-3
menu bar 5-3
MPC 5-4

models
controller specification 5-36
defining disturbances 5-49
deleting 5-26
disturbance 1-5
from MAT-file 5-11
from workspace 5-10
identified 2-19
import tool 5-9
importing 5-26
importing plant model 5-4
input disturbance 6-14
linearization during import 5-12
mismatch 6-27
mismatch in simulations 8-15
noise 5-49
notes 5-26
output disturbance 2-9
output disturbance retrieval 6-17
summary list 5-26
viewing details 5-26

moves
suppression 1-11

MPC 7-3
MPC menu

export 5-5
import controller 5-4
import plant model 5-4
simulation start 5-5

MPC state 6-29
MPCTOOL function

starting 5-2

N
names

specification 5-22
new design button 5-6
nodes

controller specification 5-7
controllers list 5-7
MPC project/task 5-7
plant models list 5-7
renaming 5-7
simulation scenario specification 5-7
simulation scenarios list 5-7
types 5-7

noise
controller settings 5-55

nominal conditions
definition 2-4
structure 8-10

nominal values
specification 5-22

notes
controllers 5-29
models 5-26
scenarios 5-33

O
observer 2-8

gain 6-36
initialization 8-12
model 6-11
See also  estimation

offset 8-10
linearization 2-4
Index-3



Index

Ind
optimal trajectory 6-21
optimization 1-7

setpoint tracking 1-10
outputs

disturbance model 2-9
disturbance model retrieval 6-17
property specifications 5-23

P
plant model importer 5-9
plant/model mismatch

simulation specification 5-58
plants

initial state 8-14
MIMO 1-10
mismatch 6-27
mismatch in simulations 8-15
nonminimum phase 1-8
nonsquare 1-10
SISO 1-3
state 2-3

plots
data markers 5-66
normalizing 5-70
simulation responses 5-66
variable selection 5-69

prediction horizon 1-8
specification 5-36

projects
controller import 5-17
importing model 5-11
load 5-3
new 5-2
renaming 5-7
save 5-4

properties
ex-4
output signals 5-23
signal specifications 5-22

R
relaxation bands

specification 5-41
response plots 5-66

See also plots
robustness

global setting 5-46

S
save button 5-6
scenarios

comparing 5-68
controller option 5-58
copying 5-33
creating 5-33
current 5-5
deleting 5-33
duration 5-58
notes 5-33
plant model option 5-58
renaming 5-7
settings 5-58
simulation button 5-58
summary list 5-33

setpoints
specification in simulations 5-58

signal definition
overview graphic 5-21
property specification table 5-22
specification view 5-21

signal properties
inputs 5-22



Index
specification 5-22
signal type

specification 5-22
signals

description 5-22
names 5-22
nominal values 5-22
types 1-4
types definition 5-22
units 5-22

simulate button 5-6
simulations

closed-loop option 5-58
duration 5-58
open-loop option 5-58
response plots 5-66
start using MPC menu 5-5

Simulink
block 7-3
initial state 7-4
look-ahead 7-4

state
controller 3-5
controller, definition 6-29
observer 2-10

See also  estimation
observer form 2-8

state estimation 1-13
states

initial 8-14
plant 2-3

steady-state 6-6
system identification

model conversion 2-19

T
tasks

importing model 5-11
tolerance bands 1-13
tool bar

overview 5-6
tree view

node types 5-7
overview 5-7

U
unconstrained control 6-6
units

specification 5-22
unmeasured disturbances

example 1-3
input model 6-14
output model 6-17

V
views

signal definition 5-21
tree 5-7

W
weights

inputs 5-47
optimization problem 2-5
outputs 5-48
specification 8-7
specification dialog 5-46
tuning 5-46

workspace
controller export 5-19
Index-5



Index

Ind
importing model from 5-10
ex-6


	Introduction
	What Is the Model Predictive Control Toolbox?
	Model Predictive Control of a SISO Plant
	A Typical Sampling Instant
	Prediction and Control Horizons

	MIMO Plants
	Optimization and Constraints
	State Estimation
	Blocking


	MPC Problem Setup
	Prediction Model
	Offsets

	Optimization Problem
	State Estimation
	Measurement Noise Model
	Output Disturbance Model
	State Observer

	QP Matrices
	Prediction
	Optimization Variables
	Cost Function
	Constraints

	MPC Computation
	Unconstrained MPC
	Constrained MPC

	Using Identified Models

	MPC Simulink Library
	MPC Controller Block
	Opening the Library
	MPC Controller Block Mask
	Look Ahead and Signals from the Workspace
	Initialization
	Using the MPC Toolbox with Real-Time Workshop


	Case-Study Examples
	Servomechanism Controller
	System Model
	Control Objectives and Constraints
	Defining the Plant Model
	Controller Design Using MPCTOOL
	Using MPC Toolbox Commands
	Using MPC Tools in Simulink

	Paper Machine Process Control
	Linearizing the Nonlinear Model
	MPC Design
	Controlling the Nonlinear Plant in Simulink

	Reference

	The Design Tool
	Opening the MPC Design Tool
	The Menu Bar
	File Menu
	MPC Menu

	The Toolbar
	The Tree View
	Node Types
	Renaming a Node

	Importing a Plant Model
	Import from
	Import to
	Buttons
	Importing a Linearized Plant Model

	Importing a Controller
	Import from
	Import to
	Buttons

	Exporting a Controller
	Dialog Options
	Buttons

	Signal Definition View
	MPC Structure Overview
	Buttons
	Signal Properties Tables
	Right-Click Menu Options

	Plant Models View
	Plant Models List
	Model Details
	Additional Notes
	Buttons
	Right-Click Options

	Controllers View
	Controllers List
	Controller Details
	Additional Notes
	Buttons
	Right-Click Options

	Simulation Scenarios List
	Scenarios List
	Scenario Details
	Additional Notes
	Buttons
	Right-Click Options

	Controller Specifications View
	Model and Horizons Tab
	Constraints Tab
	Constraint Softening
	Weight Tuning Tab
	Estimation Tab
	Right-Click Menus

	Simulation Scenario View
	Simulation Settings
	Setpoints
	Measured Disturbances
	Unmeasured Disturbances
	Signal Type Settings
	Simulation Button
	Right-Click Menus

	Response Plots
	Data Markers
	Displaying Multiple Scenarios
	Viewing Selected Variables
	Grouping Variables in a Single Plot
	Normalizing Response Amplitudes


	Function Reference
	Functions — Categorical List
	MPC Controller
	MPC Controller Characteristics
	Linear Behavior of MPC Controller
	MPC State
	MPC Computation and Simulation
	State Estimation
	Quadratic Programming

	Functions — Alphabetical List
	cloffset
	compare
	d2d
	get
	getestim
	getindist
	getmpcdata
	getname
	getoutdist
	mpc
	mpchelp
	mpcmove
	mpcprops
	mpcsimopt
	mpcstate
	mpcverbosity
	pack
	plot
	qpdantz
	set
	setestim
	setindist
	setmpcdata
	setmpcsignals
	setname
	setoutdist
	sim
	size
	ss
	tf
	trim
	zpk


	Block Reference
	Blocks — Alphabetical List
	MPC Controller Block


	Object Reference
	MPC Controller Object
	Construction and Initialization

	MPC State Object
	MPC Simulation Options Object

	Index

